Application of proteomic method in analysis of profile of protein expression in CSFV-infected PK-15 cells

Автор: Jinfu Sun, Li Geng

Журнал: International Journal of Image, Graphics and Signal Processing(IJIGSP) @ijigsp

Статья в выпуске: 5 vol.3, 2011 года.

Бесплатный доступ

Proteomic analysis is a powerful technology to enhance our insight into the pathogenesis, biomarkers and prevention of disease. Two-dimensional polyacrylamide gel electrophoresis (2-DE) is an important proteomics tool, where thousands of protein spots can be visualized, resulting in a global view of the state of a proteome. Viral infection will modify the patterns of host cell protein expression, which can affect the normal physiological function of host cell and determine viral pathogenic progress and consequence. To uncover host cellular responses in the early stage of classical swine fever virus infection, a proteomic analysis was conducted using 2DE followed by MALDI-TOF-TOF identification. Altered expression of 21 protein spots in infected pk-15 cells at 24 h p.i. were identified in 2D gels, with 13 of these being characterized by MALDI-TOF-MS/MS. These proteins function in cytoskeletal, energy metabolism, nucleic acid/processing, and cellular stress. The expression alteration of these proteins presents the changes in physiological functions of host cells and provides a clue for further understanding of the mechanisms of CSFV infection and pathogenesis.

Еще

Classical swine fever virus, 2-DE, Proteome, viral pathogenesis

Короткий адрес: https://sciup.org/15012172

IDR: 15012172

Список литературы Application of proteomic method in analysis of profile of protein expression in CSFV-infected PK-15 cells

  • S. Hanash, Disease proteomics. Nature, 422 (6928): 226-232, 2003.
  • A. Alban, David S. O., L. Bjorkesten, C. Andersson, E. Sloge, S. Lewis, I. Currie, A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 3(1): 36-44, 2003.
  • F. X. Heinz, M. S. Collett, R. H. Purcell, E. A. Gould, C. R. Howard, R. J. M. Houghton, Moormann, C. M. Rice, H. J. Thiel, Family Flaviridae. In: C. M. Fauquet, M. Mayo, J. Maniloff, U. Desselberger, L. A. Ball, (Eds.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses, Academic Press, San Diego, 2004, 981-998.
  • T. Rumenapf, G. Unger, J. H. Strauss, H. J. Thiel, Processing of the envelope glycoproteins of pestiviruses. J. Virol. 67, 3288-3294, 1993.
  • H..J. Thiel, P.G.W. Plagemann, V. Moennig, Pestiviruses. In Fields, Virology, 3rd edn. D. M. Fields, P. M. Knipe & Howley. Philadelphia: Lippincott–Raven. 1996.
  • V. Moennig, P.G.W. Plagemann, The pestiviruses. Adv. Virus Res , 41: 53–98, 1992.
  • M. Susa, M. König, A. Saalmüller, M. J. Reddehase, H. J. Thiel, Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol. 66: 1171-1176, 1992.
  • A. Summerfield, S. M. Knötig, K. C. McCullough,Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol. 72: 1853–1861, 1998a.
  • A. Summerfield, M. A. Hofmann, K. C. McCullough, Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet Immunol Immunopathol 63, 289–301, 1998b.
  • C. Choi, K.K. Hwang, C. Chae, Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis. Arch Virol, 149, 875-889, 2004.
  • P.J. Sánchez-Cordón, Núñez A, F.J. Salguero, M. Pedrera, M. Fernández de Marco, J.C. Gómez-Villamandos, Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol, 42, 477-488, 2005.
  • E. Bensaude, J.L. Turner, P.R. Wakeley, D.A. Sweetman, C. Pardieu, T.W. Drew, et al., Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol, 85,1029-1037, 2004.
  • U. Mathesius, G. Keijzers, S. H. Natera, J. J. Weinman, M. A. Diordjevic, B. G. Rolfe, Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics, 1: 1424–1440, 2001.
  • K. L. Maxwell, L. Frappier, Viral proteomics. Microbiol Mol Biol Rev. 71(2): 398-411, 2007.
  • X. S. Jiang, J. Dai, Q. H. Sheng, L. Zhang, Q. C. Xia, J. R. Wu, R. Zeng, A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase. Mol Cell Proteomics, (1): 12-34, 2005.
  • G. A. Smith, L.W. Enquist, Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol., 18: 136-61, 2002.
  • K. Döhner, B.Sodeik, The role of the cytoskeleton during viral infection. Curr. Top Microbiol. Immunol., 285: 67-108, 2005.
  • B. Adenbach, S. Arnold, I. Lee, et al. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim. Biophys. Acta, 1655: 400–8, 2004.
  • C.M. Payne, H. Holubec, C. Bernstein, H. Bernstein, K. Dvorak, S.B. Green, M. Wilson, M. Dall'Agnol, B. Dvorakova, J. Warneke, H. Garewal. Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk. Cancer Epidemiol Biomarkers Prrev. 14(9): 2066-2075, 2005.
  • G. Powis, D.L. Kirkpatrick, Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol., 7(4): 392–397, 2007.
  • L. Nonn, M. Berggren, G. Powis, Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol. Cancer Res., 1(9): 682-689, 2003.
  • Davis, W. G; Blackwell, J. L; Shi, P. Y; Brinton, M. A. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J. Virol. 81 (18): 10172-10187, 2007.
  • M. De Nova-Ocampo, N. Villegas-Sepúlveda, R. M. del Angel, Translation elongation factor-1α, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA. Virology, 295 (2): 337-347, 2002.
  • Y. H. Kou, S. M. Chou, Y. M. Wang, Y. T. Chang, S. Y. Huang, M. Y. Jung, Y. H. Huang, M. R. Chen, M. F. Chang, S. C. Chang, Hepatitis C virus NS4A inhibits cap-dependent and the viral IRES-mediated translation through interacting with eukaryotic elongation factor 1A. J. Biomed. Sci., 13 (6): 861-874, 2006.
  • C. M. Johnson, D. R. Perez, R. French, W. C. Merrick, R. O.Donis, The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1. J Gen Virol, 82: 2935–2943, 2001.
  • C. L. Leaw, Ren, M. L. Choong, Hcc-1 is a novel component of the nuclear matrix with growth inhibitory function. Cell. Mol. Life Sci. 61: 2264-73, 2004.
  • S. Fukuda, L.M. Pelus, Growth inhibitory effect of Hcc-1/CIP29 is associated with induction of apoptosis, not just with G2/M arrest. Cell Mol. Life Sci., 62: 1526-1527, 2006.
  • C. P. Walczak, B. Tsai, A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J. Virol. 85(5): 2386-2396, 2011.
Еще
Статья научная