Arabic text summarization using three-layer bidirectional long short-term memory (BILSTM) architecture
Бесплатный доступ
This work presents an improved approach to the challenging problem of Arabic Text Summarization (ATS) by introducing a novel model that seamlessly integrates state-of-the-art neural network architectures with advanced Natural Language Processing (NLP) techniques. Inspired by classical ATS approaches, our model leverages a three-layer Bidirectional Long Short-Term Memory (BiLSTM) architecture which is augmented with Transformer-based attention mechanisms and AraBERT for preprocessing, to successfully tackle the notoriously challenging peculiarities of the Arabic language. To boost performance, our model further draws upon the power of contextual embeddings from models such as GPT-3, and through the use of advanced data augmentation techniques including back-translation and paraphrasing. To further improve performance, our approach integrates novel techniques for training and uses Bayesian Optimization to perform hyperparameter optimization. The model evaluated against state-of-the-art datasets such as the Arabic Headline Summary (AHS) and Arabic Mogalad_Ndeef (AMN) and reported on traditional evaluation metrics including: ROUGE-1, ROUGE-2, ROUGE-L, BLEU, METEOR and BERTScore. This work is significant because it presents an important step forward in the task of Arabic Text Summarization (ATS) towards summarizing text to be not only coherent and concise, but also authentic and culturally relevant in an effort to push forward NLP research and applications for Arabic.
Arabic text summarization, neural networks, natural language processing, bidirectional long short-term memory, transformer-based attention
Короткий адрес: https://sciup.org/148328281
IDR: 148328281 | DOI: 10.18137/RNU.V9187.24.01.P.75
Список литературы Arabic text summarization using three-layer bidirectional long short-term memory (BILSTM) architecture
- Rui Zhang, Nan Zhang, Jianjun Yu. SentMask: A Sentence-Aware Mask Attention-Guided Two-Stage Text Summarization Component // International Journal of Intelligent Systems. 2023. Vol. 2023. Article ID 1267336. DOI: https://doi.org/10.1155/2023/1267336
- Wazery Y.M., Saleh M.E., Alharbi A., Abdelmgeid A.Ali. Abstractive Arabic Text Summarization Based on Deep Learning // Computational Intelligence and Neuroscience. 2022. Vol. 2022. Article ID 1566890. DOI: https://doi.org/10.1155/2022/1566890
- Ramanujam N., Kaliappan M. An Automatic Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier Using Timestamp Strategy // The Scientific World Journal. 2016. Vol. 2016, Article ID 1784827. DOI: https://doi.org/10.1155/2016/1784827
- Chellatamilan T., Narayanasamy S.K., Garg L., Srinivasan K., Islam S. Ensemble Text Summarization Model for CO VID-19-Associated Datasets // International Journal of Intelligent Systems. 2023. Vol. 2023. Article ID 3106631. DOI: https://doi.org/10.1155/2023/3106631
- Demilie W.B. Comparative Analysis of Automated Text Summarization Techniques: The Case of Ethiopian Languages // Wireless Communications and Mobile Computing. 2022. Vol. 2022. Article ID 3282127. DOI: https://doi.org/10.1155/2022/3282127
- Suleiman D., Awajan A. Deep Learning Based Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and Challenges. Mathematical Problems in Engineering. 2020. Vol. 2020. Article ID 9365340. DOI: https://doi.org/10.1155/2020/9365340
- Wahab M.H.H., Ali N.H., Hamid N.A.W.A., Subramaniam S.K., Latip R., Othman M. A Review on Optimization-Based Automatic Text Summarization Approach // IEEE Access. 2024. Vol. 12. P. 4892–4909. DOI: 10.1109/ACC ESS.2023.3348075
- Dutulescu A.N., Dascalu M., Ruseti S. Unsupervised Extractive Summarization with BERT // 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Hagenberg / Linz, Austria, 12–15 September 2022. Pp. 158–164. DOI: 10.1109/SYNASC57785.2022.00032
- Сомар Б. Исследование фреймворка на основе кодера-декодера с длинной краткосрочной памятью для извлекающего резюмирования текста // Инженерный вестник Дона. 2023. № 7 (103). С. 100–111. EDN UZTRKY. URL: ivdon.ru/ru/magazine/archive/n7y2023/8539 (дата обращения: 27.12.2023).
- Матюшечкин Д.С., Донская А.Р. Разработка метода автоматического перевода пиктограммного сообщения в русскоязычный текст на основе машинного обучения. Инженерный вестник Дона. 2022. № 7 (91). С. 75–85. EDN VQACLP. URL: ivdon.ru/ru/magazine/archive/n7y2022/7792 (дата обращения: 27.12.2023).
- Sharma P., Chen M. Summarization and Keyword Extraction // 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Koriyama, Japan, 2023. P. 369–372. DOI: 10.1109/IIAIAAI59060.2023.00078
- Ranganathan J., Abuka G. Text summarization n using transformer model // 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), Milan, Italy, 29 November – 01 December 2022. Pp. 1–5. DOI: 10.1109/SNAMS58071.2022.10062698