Assessment of lanthanum (La) and cerium (Ce) phytotoxicity in a halophyte species: Limbarda crithmoides L
Автор: Dridi Nesrine, Bouslimi Houda, Brito Pedro, Sleimi Noomene, Hidouri Saida, Caador Isabel
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.19, 2023 года.
Бесплатный доступ
Rare earth elements (REEs) can harmfully affect the growth and development of several plant species. However, there is a lack of studies providing the effect of REEs on Limbarda crithmoides seedlings. In the present study, the growth parameters, chlorophyll content, macroelement uptake, phenolic compounds and flavonoid contents of the halophyte L. crithmoides were analysed, after 14 days of exposure to increasing concentrations (up to 10 µM) of two light REEs; lanthanum (La) and cerium (Ce), to assess the phytotoxicity level of these REEs in the chosen species. La and Ce contents in the plant tissues were determined as well. Results revealed an inhibitory effect of La and Ce on plant growth; the length and the dry biomass production of the shoots and roots significantly decreased in all REEs concentrations, when compared to the control. Similar trend was recorded in chlorophyll a and b contents in plant leaves. Moreover, La and Ce treatments significantly decreased the uptake of potassium, calcium and magnesium in the shoots and roots of L. crithmoides while the amounts of both La and Ce were found elevated in the same organs. All La and Ce treatments promoted the stimulation of phenolic compound biosynthesis in shoots and roots. According to our experiments, the halophyte L. crithmoides was very sensitive to both La and Ce toxicity.
Light rees, limbarda crithmoides, growth inhibition, phenolic compounds, macronutrient uptake
Короткий адрес: https://sciup.org/143180099
IDR: 143180099
Список литературы Assessment of lanthanum (La) and cerium (Ce) phytotoxicity in a halophyte species: Limbarda crithmoides L
- Aggarwal A., Sharma I., Tripathi B.N. (2012). Metal toxicity and photosynthesis. In: Photosynthesis: Overviews on Recent Progress and Future Perspectives, 229-236.
- Alonso E., Sherman A.M., Wallington T.J., Everson M.P., Field F.R., Roth R., (2012). Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ Sci Technol., 46(6):3406.
- Altman A. (2003). From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell Dev. Biol. Plant 39:75-84.
- Andreani S., De Cian M.C., Paolini J., Desjobert J.M., Costa J., Muselli A. (2013). Chemical Variability and Antioxidant Activity of Limbarda crithmoides L. Essential Oil from Corsica. Chem. Biodivers., 10:2061-2077.
- Baleroni C.R.S., Ferrarese M.L.L., Souza N.E., Ferrarese-Filho O. (2000). Lipid Accumulation during Canola Seed Germination in response to Cinnamic Acid Derivatives. Biol. Planta, 43:313316.
- Bankaji I., Cagador I., Sleimi N. (2016). Assessing of tolerance to metallic and saline stresses in the halophyte Suaeda fruticosa: The indicator role of antioxidative enzymes. Ecol. Indic., 64:297-308.
- Brito P., Ferreira R.A., Martins-Dias S., Azevedo O.M., Caetano M., Cagador I. (2021). Cerium uptake, translocation and toxicity in the salt marsh halophyte Halimione portulacoides (L.) Aellen. Chemosphere, 266, 128973.
- Burda K., Strzalka K., Schmid G.H. (1995). Europium-and dysprosium-ions as probes for the study of calcium binding sites in photosystem II. Zeitschrift für Naturforschung, 50:220-230.
- Chaves M.M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103:551-560.
- DalCorso G., Manara A., Furini A. (2013). An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5 (9): 1117-1132.
- Dridi N., Ferreira R., Bouslimi H., Brito P., Martins-Dias S., Caçador I., Sleimi N. (2022b). Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. Plants, 11, 988.
- Dridi N., Bouslimi H., Duarte B., Caçador I., Sleimi N. (2022c). Evaluation of Physiological and Biochemical Parameters and Some bioindicators of Barium Tolerance in Limbarda crithmoides and Helianthus annuus. Int. J. Plant Biol., 13:115-131.
- Dridi N., Bouslimi H., Caçador I., Sleimi N. (2022d). Lead tolerance, accumulation and translocation in two Asteraceae plants: Limbarda crithmoides and Helianthus annuus. South African Journal of Botany, 150:986-996.
- El Zrelli R., Rabaoui L., Ben Alaya M., Castet S., Zouiten C., Bejaoui N., Courjault-Radé P. (2019a). Decadal effects of solid industrial wastes on the coast: Gulf of Gabes (Tunisia, Southern Mediterranean Sea) as an example. Estuar. Coast. Shelf Sci., 224:281288.
- El Zrelli R., Rabaoui L., Van Beek P., Castet S., Souhaut M., Grégoire M., Courjault-Radé P., (2019c). Natural radioactivity and radiation hazard assessment of industrial wastes from the coastal phosphate treatment plants of Gabes (Tunisia, Southern Mediterranean Sea). Mar. Pollut. Bull., 146:454-461.
- El-Sherbeny G.A., Dakhil M.A., Eid E.M., Abdelaal M. (2021). Structural and Chemical Adaptations of Artemisia monosperma Delile and Limbarda crithmoides (L.) Dumort. In Response to Arid Coastal Environments along the Mediterranean Coast of Egypt. Plants, 10, 481.
- El-Zrelli R., Baliteau J. Y., Yacoubi L., Castet S., Grégoire M., Fabre S., Sarazin V., Daconceicao L., Courjault-Radé P., Rabaoui. L. (2021). Rare earth elements characterization associated to the phosphate fertilizer plants of Gabes (Tunisia, Central Mediterranean Sea): Geochemical properties and behavior, related economic losses, and potential hazards. Science of the Total Environment 791:148268.
- Gupta D., Nicoloso F., Schetinger M. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater., 172 (1): 479-484.
- Han F., Shan X.Q., Zhang J., Xie Y.N., Pei Z.G., Zhang S.Z. (2005). Organic acids promote the uptake of lanthanum by barley roots. New Phytol., 165:481.
- Henderson P. (1984). General geochemical properties and abundances of the rare earth dements. In Rare Earth Element Geochemistry, P. Henderson, ed., 510 pp.
- Hoagland D.R., Arnon D.I. (1950). The water-culture method for growing plants without soil. Circular. Calif. Agric. Exp. Stn., 347, 32.
- Hu X., Wang X.R., Wang C. (2006). Bioaccumulation of lanthanum and its effect on growth of maize seedlings in a red loamy soil. Pedosphere 16: 799805.
- Imlay J.A. (2003). Pathways of oxidative damage. Annu Rev Microbiol, 57:395-418.
- Jiang C., Gao X., Liao L., Harberd N.P., Fu X. (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signalling pathway in Arabidopsis. Plant Physiol, 145:14601470.
- Jones A. (2000). Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci., 5:273-278.
- Klusener B., Boheim G., Liss H., Engelberth J., Weiler E.W. (1995). Gadolinium sensitive, voltage-dependent calcium-release channels in the endoplasmic reticulum of a higher-plant mechanoreceptor organ. Embo J., 14:2708-2714.
- Kosak née Rohdera L. A., Brandta T., Sigga L., Behra R. (2018). Uptake and effects of cerium (III) and cerium oxide nanoparticles to Chlamydomonas reinhardtii. Aquatic Toxicology, 197:41-46.
- Kotelnikova A., Fastovets I., Rogova O., Volkov D. S., Stolbova V. (2019). Toxicity assay of lanthanum and cerium in solutions and soil. Ecotox. Env. Saf., 167:20-28.
- Lamaison J.L., Carnat A. (1990). Teneurs en acide rosmarinique, en dérivés hydroxycinnamiques totaux et activités antioxydantes chez les Apiacées, les Borraginacées et les Lamiacées médicinales. Pharm. Acta Helv., 65:315-320.
- Leyser O. (2005). Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell, 121:819-822.
- Li X.F., Chen Z., Chen Z.B., Chen Z.Q., Zhang Y.H. (2013). A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 93(6):1240.
- Liu C., Liu W.S., Huot H., Yang Y.M., Guo M.N., Morel J. L., Tang Y.T., Qiu. R.L. (2022). Responses of ramie (Boehmeria nivea L.) to increasing rare earth element (REE) concentrations in a hydroponic system. Journal of rare earth, 40:840-846.
- Liu Y., Xu L., Dai Y. (2018). Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.). IOP Conf. Series: Earth and Environmental Science, 113:012020.
- Macedo A. F. (2012). Abiotic Stress Responses in Plants: Metabolism to Productivity. Review in P. Ahmad and M.N.V. Prasad (eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer: 41-61.
- Mali M., Aery N. C. (2009). Effect of silicon on growth, biochemical constituents and mineral nutrition of cowpea (Vigna unguiculata (L.) Walp.). Commun. Soil Sci. Plant Anal., 40:1041-1052.
- Mathesius U. (2001). Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot., 52:419-426.
- Mira L., Fernandez M.T., Santos M., Rocha R., Florencio M.H., Jennings K.R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 36:1199-1208.
- Mishra B., Sangwan N.S. (2019). Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regul., 87:403-412.
- Mumm P., Wolf T., Fromm J. (2011). Cell type-specific regulation of ion channels within the maize stomatal complex. Plant Cell Physiol., 52: 1365-1375.
- Nada E., Ferjani B.A., Ali R., Bechir B.R., Imed M., Makki B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant, 29:57-62.
- Paponov I.A., Teale W.D., Trebar M., Blilou I., Palme K. (2005). The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci., 10: 170-177.
- Parmar T. K., Rawtani D., Agrawal Y.K. (2016). Bioindicators: the natural indicator of environmental pollution. Frontiers in life science, 9: 110-118.
- Patakas A. (2012). Abiotic Stress-Induced Morphological and Anatomical Changes in Plants. In P. Ahmad and M.N.V. Prasad (eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer, 21-39.
- Qiu G., Li W., Li X., Zhou W., Yang C. (2005). Biological intelligence of rare earth elements in animal cells. J. Rare Earth., 23: 554-573.
- Reichheld J.P., Vernoux T., Lardon F., Van-Montagu M., Inze D. (1999). Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J., 17: 647-656.
- Rezaee A., Hale B., Santos R.M., Chiang Y.W. (2017). Accumulation and Toxicity of Lanthanum and Neodymium in Horticultural Plants (Brassica chinensis L. and Helianthus annuus L.). Can. J. Chem. Eng., 96:2263-2272.
- Ros-Barcelo A., Pomar F., Lopez-Serrano M., Martinez P., Pedreno M.A. (2002). Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol Biochem., 40:325332.
- Schrader J., Baba K., May S.T., Palme K., Bennett M., Bhalerao R.P., Sandberg G. (2003). Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. USA, 100:10096-10101.
- Schwenke H., Wagner E. (1992). A new concept of root exudation. Plant Cell Environ. 15:289-299.
- Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24, 2452.
- Sharma P., Dubey R.S. (2005). Lead toxicity in plants. Braz. J. Plant Physiol., 17:35-52.
- Sleimi N., Bankaji I., Kouki R., Dridi N., Duarte B., Caçador I. (2022). Assessment of extraction methods of trace metallic elements in plants: Approval of a common method. Sustainability, 14, 1428.
- Smirnov O.E., Kosyan A.M., Kosyk O.I., Taran N.Y. (2015). Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum moench. plants. Ukr. Biochem. J., 87:129-135.
- Stolt J.P., Sneller F.E.C., Brynelsson T., Lundborg T., Schat H. (2003). Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot., 49, 2128.
- Tammeba P., Wennberg T., Vuorela H., Vuorela P. (2004). HPLC microfraction coupled to a cellbased assay for automated online primary screening of calcium antagonistic components in plant extracts. Anal. Bioanal. Chem., 380: 614-618.
- Tian Z.H., Guo S.F., Li S.Q., Sun Q.X., Cao L. (2016). Effects of La on Several Physiological and Biochemical Indexes and Chloroplast Ultrastructure of Honeysuckle. J. Chin. Rare Earths, 34:469-476.
- Velioglu Y.S., Mazza G., Gao L., Oomah B.D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem., 46, 4113-4117.
- Wang X., Shi G. X., Xu Q. S., Xu B. J, Zhao J. (2007). Lanthanum and cerium induced oxidative stress in submerged Hydrilla verticillata plants. Russ. J. Plant Physiol., 54, 693-697.
- Wany C., Shi C., Liu L., Wang C. Qiao W., Gu Z., Wang X. (2012). Lanthanum element induced imbalance of mineral nutrients, hsp 70 production and DNAprotein crosslink, leading to hormetic response of cell cycle progression in root tips of Vicia Faba L. seedlings. Dose-Response: An International Journal, 10:96-107.
- Williams R.J., Spencer J.P., Rice-Evans C. (2004). Flavonoids: Antioxidants or signaling molecules? Free. Radic. Biol. Med., 36, 838-849.
- Winkel-Shirley B. (2002). Biosynthesis of fl avonoids and effects of stress. Curr Opin Plant Biol, 5:218-223.
- Yin H., Wang J., Zeng Y., Shen X., He Y., Ling L., Cao L., Fu X., Peng L., Chun C. (2021). Effect of the Rare Earth Element Lanthanum (La) on the Growth and Development of Citrus Rootstock Seedlings. Plants, 10, 1388.
- Yuan M., Guo M.N., Liu W.S., Liu C., van der Ent A., Morel J.L. (2017). The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana, L. Plant Soil., 421:66.
- Zeng Q., Zhu J.G., Cheng H.L., Xie Z.B., Chu H.Y. (2006). Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols. Ecotoxicology and Environmental Safety, 64:226-233.
- Zhang W., Ebbs S. D., Musante C., White J. C., Gao C., Ma X. (2015). Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (Raphanus sativus L.). J. Agric. Food Chem., 63:382-390.
- Zurayk R.A., Baalbaki R. (1996). Inula crithmoides: A Candidate Plant for Saline Agriculture. Arid Soil Res. Rehabil., 10, 213-223.