Assessment of Nanotoxicity of Silver Nanoparticles on Pea (Pisum sativum) grown under ex situ conditions

Автор: Poonam Rani, Shailendra Singh Gaurav, Lily Trivedi, Amardeep Singh, Gyanika Shukla

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.17, 2021 года.

Бесплатный доступ

There has been an expanding interest for eco friendly synthesis of silver nanoparticles that don't have so much toxic impacts on crops. Silver nanoparticles have a wide scope of utilizations, for example, catalysis, hardware, photonics, optoelectronics, detecting, agriculture and drugs. In this study, the biologically synthesized and characterization of silver nanoparticles have become the prime areas. Green synthesis of nanoparticles using plant extracts is being explored globally owing to the absence of disadvantages associated with conventional methods. This study reports the synthesis of silver nanoparticles using the extract of Bambusa vulgaris (Bamboo), Azadirachta indica (Neem) leaves, characterization of the synthesized by using techniques such as Ultraviolet-Visible (UV-Vis) spectroscopy confirmed the synthesis of nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and EDX studies revealed the characteristics of the nanoparticles synthesized. Also under this, we examined the effects of silver nanoparticles (AgNPs) on pea plants in the terms of silver accumulation, production of reactive oxygen species (ROS), Quantification of Cell Death under ex situ conditions.

Еще

Silver nanoparticles, reactive oxygen species, Bambusa vulgaris, accumulation

Короткий адрес: https://sciup.org/143173886

IDR: 143173886

Список литературы Assessment of Nanotoxicity of Silver Nanoparticles on Pea (Pisum sativum) grown under ex situ conditions

  • Ali, K., Cherian, T., Fatima, S., Saquib, Q., Faisal, M., Alatar, A.A., Musarrat, J. and Al-Khedhairy, A.A., 2020. Surface Engineering Techniques Associated with Stability, Biocompatibility, and Toxicity of Nanoparticles. In Green Synthesis of Nanoparticles: Applications and Prospects (pp. 75-101). Springer, Singapore.
  • Asli, S. and Neumann, P.M., 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, cell & environment, 32(5), pp.577-584.
  • Babulreddy, N., Sahoo, S.P., Ramachandran, S. and Dhanaraju, M.D., 2013. Anti-hyperglycemic activity of Cucumis Melo Leaf extracts in Streptozotocin induced Hyperglycemia in Rats. Inter J, 2(4), pp.22-27.
  • Bilal, M., Rasheed, T., Iqbal, H.M., Li, C., Hu, H. and Zhang, X., 2017. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International journal of biological macromolecules, 105, pp.393-400.
  • Blackwell, J.M., Barton, C.H., White, J.K., Roach, T.I., Shaw, M.A., Whitehead, S.H., Mock, B.A., Searle, S., Williams, H. and Baker, A.M., 1994. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunology letters, 43(1-2), pp.99-107.
  • Cui, D., Zhang, P., Ma, Y.H., He, X., Li, Y.Y., Zhao, Y.C. and Zhang, Z.Y., 2014. Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). Journal of Zhejiang University SCIENCE A, 15(8), pp.662-670.
  • Dimkpa, C.O., McLean, J.E., Latta, D.E., Manangón, E., Britt, D.W., Johnson, W.P., Boyanov, M.I. and Anderson, A.J., 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), p.1125.
  • Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), pp.909-930.
  • Gomathi, M., Prakasam, A., Rajkumar, P.V., Rajeshkumar, S., Chandrasekaran, R. and Anbarasan, P.M., 2020. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South African Journal of Chemical Engineering, 32, pp.1-4.
  • Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S. and Salavati-Niasari, M., 2016. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Scientific reports, 6, p.32539.
  • Gupta, S.D., Saha, N., Agarwal, A. and Venkatesh, V., 2020. Silver nanoparticles (AgNPs) induced impairment of in vitro pollen performance of Peltophorum pterocarpum (DC.) K. Heyne. Ecotoxicology, 29(1), pp.75-85.
  • Guzmán-Dávalos, L., Ortega, A., Contu, M., Vizzini, A., Rodríguez, A., Villalobos-Arámbula, A.R. and Santerre, A., 2009. Gymnopilus maritimus (Basidiomycota, Agaricales), a new species from coastal psammophilous plant communities of northern Sardinia, Italy, and notes on G. arenophilus. Mycological progress, 8(3), pp.195-205.
  • Harmsen, S., Wall, M.A., Huang, R. and Kircher, M.F., 2017. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nature protocols, 12(7), p.1400.
  • Hemlata, Meena, P.R., Singh, A.P. and Tejavath, K.K., 2020. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS omega, 5(10), pp.5520-5528.
  • Hemmati, S., Rashtiani, A., Zangeneh, M.M., Mohammadi, P., Zangeneh, A. and Veisi, H., 2019. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 158, pp.8-14.
  • Homaee, M.B. and Ehsanpour, A.A., 2016. Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Horticulture, Environment, and Biotechnology, 57(6), pp.544-553.
  • Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. and Rai, M., 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4(2), pp.141-144.
  • Kah, M., Kookana, R.S., Gogos, A. and Bucheli, T.D., 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature nanotechnology, 13(8), pp.677-684.
  • Kalaiarasi, R., Prasannaraj, G. and Venkatachalam, P., 2013. A rapid biological synthesis of silver nanoparticles using leaf broth of Rauvolfia tetraphylla and their promising antibacterial activity.
  • Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M.F., Khalid, S., Ur Rehman, M.Z. and Sarwar, M.A., 2020. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollution Research, 27(5), pp.4958-4968.
  • Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R. and Schuster, E.W., 2012. Applications of nanomaterials in agricultural production and crop protection: a review. Crop protection, 35, pp.64-70.
  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y. and Kim, Y.K., 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), pp.95-101.
  • Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. and Ghassempour, A., 2013. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and environmental safety, 88, pp.48-54.
  • Nair, R., 2016. Effects of nanoparticles on plant growth and development. In Plant Nanotechnology (pp. 95-118). Springer, Cham.
  • Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S., 2010. Nanoparticulate material delivery to plants. Plant science, 179(3), pp.154-163.
  • Nel, A., Xia, T., Mädler, L. and Li, N., 2006. Toxic potential of materials at the nanolevel. science, 311(5761), pp.622-627.
  • Oukarroum, A., Barhoumi, L., Pirastru, L. and Dewez, D., 2013. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environmental Toxicology and Chemistry, 32(4), pp.902-907.
  • Panda, K.K., Achary, V.M.M., Krishnaveni, R., Padhi, B.K., Sarangi, S.N., Sahu, S.N. and Panda, B.B., 2011. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicology in vitro, 25(5), pp.1097-1105.
  • Parashar, V., Parashar, R., Sharma, B. and Pandey, A.C., 2009. Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1).
  • Patlolla, A.K., Berry, A., May, L. and Tchounwou, P.B., 2012. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. International journal of environmental research and public health, 9(5), pp.1649-1662.
  • Pokhrel, L.R. and Dubey, B., 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment, 452, pp.321-332.
  • Rai, M., Yadav, A. and Gade, A., 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), pp.76-83. f Cassia auriculata. Dig J Nanomater Biostruct, 6(1), pp.279-283.
  • Rao, Y.S., Kotakadi, V.S., Prasad, T.N.V.K.V., Reddy, A.V. and Gopal, D.S., 2013. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, pp.156-159.
  • Remédios, C., Rosário, F. and Bastos, V., 2012. Environmental nanoparticles interactions with plants: Morphological, physiological, and genotoxic aspects. Journal of Botany.
  • Rossi, L., Zhang, W., Schwab, A.P. and Ma, X., 2017. Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in Glycine max (L.) Merr. Environmental Science & Technology, 51(21), pp.12815-12824.
  • Senthil, V., Ramasamy, P., Elaiyaraja, C. and Elizabeth, A.R., 2010. Some phytochemical prosperities affected by the infection of leaf spot disease of Cucumis sativus (Linnaeus) caused by Penicillium notatum. African Journal of Basic & Applied Sciences, 2(3-4), pp.64-70.
  • Shukla, G., Gaurav, S.S., Rani, V., Singh, A., Rani, P., Verma, P. and Kumar, B., 2020a. Evaluation of larvicidal effect of mycogenic silver nanoparticles against white grubs (Holotrichia sp). Journal of Advanced Scientific Research, 11(1 Suppl 1).
  • Shukla, G., Gaurav, S.S., Singh, A., 2020. Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). Springer – International Nano Letters, 10(2), pp.131-139.
  • Singh, A., Gaurav, S.S., Shukla, G., Rani, P., Kumar, B. and Kumar, A., 2020b. Evaluation of mycogenic silver and zinc oxide nanoparticles as potential control agent against early blight (Alternaria solani) of potato (Solanum tuberosum L.). Journal of Advanced Scientific Research, 11(2).
  • Tripathi, D.K., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K. and Chauhan, D.K., 2017. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, pp.2-12.
  • Udayasoorian, C., Kumar, K.V. and Jayabalakrishnan, M., 2011. Extracellular synthesis of silver nanoparticles using leaf extract o Verma, S.K., Das, A.K., Patel, M.K., Shah, A., Kumar, V. and Gantait, S., 2018. Engineered nanomaterials for plant growth and development: a perspective analysis. Science of the Total Environment, 630, pp.1413-1435.
Еще
Статья научная