Attenuation of chromium toxicity in mine waste water using water hyacinth

Автор: Mohanty M., Patra H.K.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.7, 2011 года.

Бесплатный доступ

The mine waste water at South Kaliapani chromite mining area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr+6). Cr+6contaminated mine waste water poses potential threats for biotic community in the vicinity. The current field based phytoremediation study is an in situapproach for attenuation of Cr+6 mine waste water using water hyacinth (Eichhornia crassipes) weeds by rhizofiltration method. The weeds significantly reduced (up to 54%) toxicof Cr+6 contaminated mine waste water when passed through succeeding water hyacinth ponds. The reduction of toxic chromium level varied with the plant age and passage distance of waste water. Chromium phytoaccumulation and Bio-Concentration Factor (BCF) was maximum at growing stage of plant i.e. 75 days old plant. High BCF (10,924) and Transportation Index (32.09) for water hyacinth indicated that the weeds can be used as a tool of phytoremediation to combat the problem of in situ contamination in mining areas.

Еще

Chromium stress, mine waste water, phytoremediation, water hyacinth

Короткий адрес: https://sciup.org/14323563

IDR: 14323563

Список литературы Attenuation of chromium toxicity in mine waste water using water hyacinth

  • Adriano, D.C. (1986) Trace elements in the environment. Chapter 5: Chromium. Springer-Verlag, New York. NY, pp 105-123.
  • APHA (American Public Health Association) (1995) Standard methods for the examination of water and waste water, 19th edn. Washington DC 20005.
  • ATSDR (Agency for Toxic Substances and Disease Registry) (1998) Toxicological Profile for Chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
  • Bath, E. (1989) Effects of heavy metals in soil on microbial processes and populations -A review. Water Air Soil Poll., 47, 335-379.
  • Bonet, A., Poschenrieder, Ch. and Barcelo, J. (1991) Chromium-III iron interaction in Fe deficient and Fe sufficient bean plants. I. Growth and nutrient content. J. Pl. Nutr., 14(4), 403-414.
  • Chaney, R.L., Malik, K.M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S. and Baker, J.M.A. (1997) Phytoremediation of soil metals. Curr. Opin Biotech., 8, 279 -284.
  • Dickinson, N.M. and Lepp, N.W. (1997) Metals and trees: impacts, responses to exposure and exploitation of resistance traits. In Prost, R. (Ed.), Contaminated soils, the 3rd International Conference on the Biogeochemistry of Trace Elements. Paris: INRA, pp. 247 -254.
  • Dong, J., Wu, F., Huang, R. and Zang, G. (2007) A Chromium tolerant plant growing in Cr-contaminated land. Int. J. Phytoremediat., 9, 167-179.
  • EPA. (2000) Introduction to phytoremediation. Washington. EPA/600/R-99/107.
  • Erenoglu, B.E., Patra, H.K., Khodr, H., Romheld, V. and Wiren, N.V. (2007) Uptake and apoplasmic retention of EDTA and phytosiderophore-chelated chromium (III) in maize. J. Pl. Nutr. Soil Sc., 170(6), 788-795.
  • Ghosh, M. and Singh, S.P., (2005a) A review on phytoremediation of heavy metals and utilization of its by-products. App. Ecol. Environ. Res., 3(1), 1-18.
  • Ghosh, M. and Singh, S.P. (2005b) Comparative uptake and phytoextraction study of Soil induced chromium by accumulator and high Biomass weed species. App. Ecol. Environ. Res., 3(2), 67-79.
  • HACH. (1992) Soil and Irrigation water manual, SIW kit. 24960-88. USA
  • IBM (Indian Bureau of Mines) (2004) Annual Report of IBM. Govt. of India.
  • Jena AK, Mohanty M, Patra HK (2004) Phyto-remediation of environmental chromiun -A review. e-Planet 2 (2), 100-103
  • Katz, S.A. and Salem, H. (1994) The biological and environmental chemistry of chromium. VCH Publishers, Inc., New York. NY, ISBN 1-56081-629-5, 214p
  • Krishnamurthy, S. and Wilkens, M.M. (1994) Environmental chemistry of Cr. Northeast. Geol., 16(1), 14-17.
  • Misra, A.K., Pattnaik, R., Thatoi, H.N. and Padhi, G.S. (1994) Study on growth and N2 fixation ability of some leguminous plant species for reclamation of mine spoilt areas of Eastern Ghats of Orissa. Final Technical Report submitted to Ministry of Environment and Forests, Govt. of India.
  • Mohanty, M., Jena, A.K. and Patra, H.K. (2005a) Effect of chelated chromium compounds on chlorophyll content and activities of catalase and peroxidase in wheat seedlings. Ind. J. Agr. Biochem., 8 (1), 25-29.
  • Mohanty, M., Pattnaik, M.M., Mishra, A.K. and Patra, H.K., (2005b) Assessment of Soil and Water Quality of Chromite Mine Area of South Kaliapani, (Sukinda, Orissa). Bull. Environ. Sc., 23 (2), 109-113. ISSN: 0971-1732
  • Mohanty, M., Pattanaik, M.M., Misra A.K. and Patra H.K. (2009). Chromium detoxification from mine waste water by rice -A case study at South Kaliapani chromite mine area, Sukinda, Orissa. e-Planet., 7(1), 26-31.
  • Mohanty, M., Dhal, N.K., Patra, P., Das, B. and Reddy, P.S.R. (2010a) Phytoremediation: A Novel Approach for Utilization of Iron-Ore Wastes. Rev. Environ. Contam. Toxicol., 206, 29-47. DOI 10.1007/978-1-4419-6260-7_2.
  • Mohanty, M., and Patra, H.K. (2011) Attenuation of Chromium Toxicity by Bioremediation Technology. Rev. Environ. Contam. Toxicol., 210: 1-34. DOI 10.1007/978-1-4419-7615-4_1.
  • Mohanty, M., Pattanaik, M.M., Misra A.K. and Patra H.K., (2010b) Chromium Bioaccumulation in Rice grown in Contaminated Soil and Irrigated Mine Waste Water -A Case Study At South Kaliapani Chromite Mine Area, Orissa, India. Int. J. Phytoremediat., (In press). DOI: DOI: 10.1080/15226511003753979
  • Panda, S.K. and Patra, H.K. (1997a) Physiology of chromium toxicity in plants -A review. Pl. Physiol. Biochem., 24 (1), 10-17.
  • Panda, S.K. and Patra, H.K., (1997b) Some of the toxicity lesions produced by chromium (VI) during the early phase of seed germination in wheat. J. Ind. Botanical Soc., 76, 303 -304.
  • Panda, S.K. and Patra, H.K. (1998) Attenuation of nitrate reductase activity by chromium ions in excised wheat leaves. Ind. J. Agr. Biochem., 2(2), 56-57.
  • Pawlisz, A.V. (1997) Canadian water quality guidelines for Cr. Enviro. Toxicol. Water Qual., 12(2), 123-161.
  • Pulford, I.D. and Watson, C. (2003) Phytoremediation of heavy metal contaminated land by trees-A review. Environ. Int., 29, 529-540.
  • Sadowsky, M. J. (1999) In Phytoremediation: Past promises and future practices. -Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, Canada; pp. 1-7.
  • Salt, D.E., Smith, R.D. and Raskin, I. (1998) Phytoremediation. Ann. Rev. Pl. Physiol. Pl. Mol. Biol., 49, 643-668.
  • Shanker, A.K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C.N. and Pathmanabhan, G. (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek) roots. Pl. Sc., 166, 1035-1043.
  • Srivastava, S., Prakash, S. and Srivastava, M.M. (1999) Chromium mobilization and plant availability-the impact of organic complexing ligands. Pl. Soil., 212, 203-208.
  • Terry, N. and Banuelos, G. (2000) Phytoremediation of Contaminated Soil and Water. Lewis Publishers, New York. 389 pp.
  • USEPA (U.S. Environmental Protection Agency) (1998) Toxicological Review of Hexavalent Chromium. National Center for Environmental Assessment, Office of Research and Development, Washington, DC.
  • Zayed., A., Lytle, C.M., Qian, J.H. and Terry, N. (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta. 206, 293-299.
  • Zayed, A.M. and Terry, N. (2003) Chromium in the Environment: factor affecting biological remediation. Pl. Soil. 249, 139-156.
  • Zhu, Y.L., Zayed, A.M., Qian, J.H., De Souza, M., Terry, N., 1999. Phytoaccumulation of trace elements by wet land plants. II. Water Hyacinth. J. Environ. Qual., 28, 339-344.
  • Zhang, X.H., Liu, J., Huang, H.T., Chen, J., Zhu, Y.N. and Wang, D.Q. (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere., 67, 1138-1143.
  • Zurayk, R., Sukkariyah, B., Baalbaki, R. and Ghanem, D.A. (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Poll., 139, 355-364.
Еще
Статья научная