Automatic 4-mirrors system for alignment of high-power laser radiation
Автор: Toporovsky V.V., Alexandrov A.G., Galaktionov I.V., Rukosuev A.L., Kudryashov A.V.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Дифракционная оптика, оптические технологии
Статья в выпуске: 1 т.48, 2024 года.
Бесплатный доступ
This paper presents the automated system for minimizing the deviation of the path of passage and the divergence of a secondary radiation source with parameters similar to ones of the main beam of a high-power Ti:Sa laser using mirrors in kinematic mounts on the motorized stages. As an alignment laser, the diode laser with a fiber output was used with radiation characteristics coinciding with the parameters of the main beam (wavelength, beam diameter). The successive approximation algorithm was used to minimize the beam deflection. The positioning accuracy and beam size matching were analyzed on the near-field camera and were equaled to 28.6 µm along the X-axis and 26.4 µm along the Y-axis. Beam size mismatch was equaled to 0.151 mm. The pointing accuracy was analyzed on the far-field sensor and equaled 15.34 µrad along the X axis and 12.03 µrad along the Y axis. The curvature of the wavefront was 0.06 µm.
Ti:sa laser, automatic alignment, beam position, ultrahigh-power laser radiation
Короткий адрес: https://sciup.org/140303271
IDR: 140303271 | DOI: 10.18287/2412-6179-CO-1327
Список литературы Automatic 4-mirrors system for alignment of high-power laser radiation
- Ustinov AV, Khonina SN. Properties of off-axis caustics of autofocusing chirp beams. Computer Optics 2020; 44(5): 721-727. DOI: 10.18287/2412-6179-CO-794.
- Agafonov AN, Volodkin BO, Kaveev AK, Kachalov DG, Knyazev BA, Kropotov GI, Tukmakov KN, Pavelyev VS, Tsypishka DI, Choporova YuYu. Binary DOE with elongated focal depth to focus terahertz free electron laser radiation (NOVOFEL). Computer Optics 2015; 39(1): 58-63. DOI: 10.18287/0134-2452-2015-39-1-58-63.
- Belousov VN, Bogachev VA, Volkov MV, Garanin SG, Kudryashov AV, Nikitin AN, Rukosuev AL, Starikov FA, Sheldakova YuV, Shnyagin RA. Investigation of spatial and temporal characteristics of turbulent-distorted laser radiation during its dynamic phase correction in an adaptive optical system. Quantum Electron 2021; 51(11): 992-999. DOI: 10.1070/QEL17641.
- Li Z, Leng Y, Li R. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks laser. Photonics Rev 2022; 17(1): 2100705. DOI: 10.1002/lpor.202100705.
- Lyu H, Huang Y, Sheng B, Ni Z. Absolute optical flatness testing by surface shape reconstruction using Zernike polynomials. Opt Eng 2018; 57: 094103. DOI: 10.1117/1.OE.57.9.094103.
- Khonina SN, Karpeev SV, Porfirev AP. Wavefront aberration sensor based on a multichannel diffractive optical element. Sensors 2020; 20: 3850. DOI: 10.3390/s20143850.
- Samarkin V, Alexandrov A, Galaktionov I, Kudryashov A, Nikitin A, Rukosuev A, Toporovsky V, Sheldakova J. Wide-aperture bimorph deformable mirror for beam focusing in 4.2 PW Ti:Sa laser. Appl Sci 2022; 12: 1144. DOI: 10.3390/app12031144.
- Soloviev A, Kotov A, Martyanov M, Perevalov S, Zemskov R, Starodubtsev M, Alexandrov A, Galaktionov I, Samarkin V, Kudryashov A, Yakovlev I, Ginzburg V, Kochetkov A, Shaikin I, Kuzmin A, Stukachev S, Mironov S, Shaykin A, Khazanov E. Improving focusability of post-compressed PW laser pulses using a deformable mirror. Opt Express 2022; 30: 40584-40591. DOI: 10.1364/OE.471300.
- Toporovsky V, Samarkin V, Sheldakova J, Rukosuev A, Kudryashov A. Water-cooled stacked-actuator flexible mirror for high-power laser beam correction. Optics & Laser Technology 2021; 144: 107427. DOI: 10.1016/j.optlastec.2021.107427.
- Lukin VP. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi 2014; 57: 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
- Ji N. Adaptive optical fluorescence microscopy. Nat Methods 2017; 14: 374-380. DOI: 10.1038/nmeth.4218.
- Bond CZ, Wizinowich P, Chun M, Mawet D, Lilley S, Cetre S, Jovanovic N, Delorme J, Wetherell E, Jacobson SM. Adaptive optics with an infrared pyramid wavefront sensor. Proc SPIE 2018; 10703: 107031Z. DOI: 10.1117/12.2314121.
- Khorin PA, Porfirev AP, Khonina SN. Adaptive detection of wave aberrations based on the multichannel filter. Photonics 2022; 9: 204. DOI: 10.3390/photonics9030204.
- Fuschetto A. Three-actuator deformable water-cooled mirror. Opt Eng 1981; 20(2): 202310. DOI: 10.1117/12.957289.
- Everson JH, Aldrich RE, Cone M, Kenemuth J. Device parameters and optical performance of a Stacked Actuator Deformable Mirror. Proc SPIE 1980; 0228: 34-40. DOI: 10.1117/12.958766.
- Wirth A, Cavaco J, Bruno T, Ezzo KM. Deformable mirror technologies at AOA Xinetics. Proc SPIE 2013; 8780: 87800M. DOI: 10.1117/12.2018031.
- Sinquin JC, Lurçon JM, Guillemard C. Deformable mirror technologies for astronomy at CILAS. Proc SPIE 2008; 7015: 70150O. DOI: 10.1117/12.787400.
- Awwal AAS, Leach RR, Miller-Kamm V, Wilhelmsen K, Lowe-Webb R. Image processing for the automatic alignment at the national ignition facility. Proc IEEE Conf on Lasers and Electro-Optics (CLEO) 2016: 1-2.
- Awwal AAS. Alignment of pointing beam in the Optical Thomson Scattering Laser at the National Ignition Facility. Proc SPIE 2021; 11841: 118410I. DOI: 10.1117/12.2596187.
- Haynam CA, Wegner PJ, Auerbach JM, Bowers MW, Dixit SN, Erbert GV, Heestand GM, Henesian MA, Hermann MR, Jancaitis KS, Manes KR, Marshall CD, Mehta NC, Menapace J, Moses E, Murray JR, Nostrand MC, Orth CD, Patterson R, Sacks RA, Shaw MJ, Spaeth M, Sutton SB, Williams WH, Widmayer CC, White RK, Yang ST, Van Wonterghem BM. National Ignition Facility laser performance status. Appl Opt 2007; 46(16): 3276-3303. DOI: 10.1364/AO.46.003276.
- Burkhart SC, Bliss E, Di Nicola P, Kalantar D, Lowe-Webb R, McCarville T, Nelson D, Salmon T, Schindler T, Villanueva J. National Ignition Facility system alignment. Appl Opt 2011; 50(8): 1136-1157. DOI: 10.1364/AO.50.001136.
- Hilsz L, Benoit J, Poutriquet F, Bach O, Nicaise F, Adolf A. Redesign of image processing techniques used for the alignment of the LMJ transportion section. Proc SPIE 2010; 7797: 77970D. DOI: 10.1117/12.859669.
- Rozanov VB, Gus’kov SY, Vergunova GA, Demchenko NN, Stepanov RV, Doskoch IA, Yakhin RA, Zmitrenko NV. Direct drive targets for the megajoule facility UFL-2 M. J Phys Conf Ser 2016; 688: 12095. DOI: 10.1088/1742-6596/688/1/012095.
- Li H, Wang DF, Zou W, Lin Q, Zhang YL, Jiang ZC, Liu DZ, Zhu BQ, Zhu JQ, Gong L. Design of high-power laser beam automatic alignment system. Chin J Lasers 2013; 40(10): 1002003. DOI: 10.3788/CJL201340.1002003.
- Wang S, Qiang Y, Zeng F, Zhang X, Zhao J, Li K, Zhang X, Xue Q, Yang Y, Dai W, Zhou W, Wang Y, Zheng K, Su J, Hu D, Zhu Q. Beam alignment based on two-dimensional power spectral density of a near-field image. Opt Express 2017; 25: 26591-26599. DOI: 10.1364/OE.25.026591.
- Kemp GE, Colvin JD, Fournier KB, May MJ, Barrios MA, Patel MV, Scott HA, Marinak MM. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser. Physics of Plasmas 2015; 22(5): 053110. DOI: 10.1063/1.4921250.
- Kudryashov AV, Samarkin VV, Sheldakova YV, Aleksandrov AG. Wavefront compensation method using a Shack-Hartmann sensor as an adaptive optical element system. Optoelectron Instrum Data Process. 2012; 48(2): 153-158. DOI: 10.3103/S8756699012020070.
- Vогоntsоv МА, Shmal'gauzen VI. An aperture probing method in adaptive radiation focusing systems. Quantum Electron 1981; 8(1): 57-63. DOI: 10.1070/QE1981v011n01ABEH005310.
- Kudryashov A, Alexandrov A, Rukosuev A, Samarkin V, Galarneau P, Turbide S, Châteauneuf F. Extremely high-power CO2 laser beam correction. Appl Opt 2015; 54(14): 4352-4358. DOI: 10.1364/AO.54.004352.
- Document ISO/DIS 11146 Test method for laser beam parameters: Beam width, divergence angle and beam propagation factor. International Organization for Standardization; 1996.