Автоматическое извлечение мнений пользователей социальных сетей по вопросам репродуктивного поведения
Автор: Калабихина Ирина Евгеньевна, Лукашевич Наталья Валентиновна, Банин Евгений Петрович, Алибаева Камила Винеровна, Ребрей Софья Михайловна
Журнал: Программные системы: теория и приложения @programmnye-sistemy
Рубрика: Искусственный интеллект, интеллектуальные системы, нейронные сети
Статья в выпуске: 4 (51) т.12, 2021 года.
Бесплатный доступ
В данной работе мы представляем специализированный датасет, с разметкой мнений пользователей о репродуктивном поведении. Мы анализируем особенности распределение оценок «за» и «против» по конкретным аспектам репродуктивного поведения. Созданный датасет используется для решения двух задач классификации: классификации сообщений по релевантности изучаемых тем и позиции автора по той или иной теме. Для классификации сообщений используются классические методы машинного обучения, а также нейросетевая модель BERT. Лучшие результаты классификации в обеих задачах достигаются на основе вариантов модели BERT с использованием в классификации пар предложений - варианты NLI (natural language inference - вывод по тексту) и QA (question-answering - вопросно/ответный подход). Кроме того, созданный датасет позволяет сделать содержательные выводы по вопросам отношения пользователей сети ВКонтакте к вопросам репродуктивного поведения. Выявлено, что феномен сознательной бездетности активно представлен в сети, а многодетность остается слабо распространенной моделью поведения. В рамках пронаталистской политики важно формировать позитивное общественное мнение о родительстве, смягчать дефицит времени у родителей.
Анализ мнений, обучение с учителем, демографическая политика, вконтакте, репродуктивное поведение
Короткий адрес: https://sciup.org/143178114
IDR: 143178114 | DOI: 10.25209/2079-3316-2021-12-4-33-63
Список литературы Автоматическое извлечение мнений пользователей социальных сетей по вопросам репродуктивного поведения
- F. A. Pozzi, E. Fersini, E. Messina, B. Liu. “Challenges of sentiment analysis in social networks: an overview”, Sentiment Analysis in Social Networks, Elsevier, 2017, ISBN 978-0-12-804412-4, pp. 1–11.
- B. Liu. “Sentiment analysis and opinion mining”, Synthesis Lectures on Human Language Technologies, 5:1 (2012), pp. 1–167.
- S. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu, C. Cherry. “Semeval-2016 task 6: detecting stance in tweets”, Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval-2016 (June 2016, San Diego, California), ACL, 2016, pp. 31–41.
- S. V. Vychegzhanin, E. V. Kotelnikov. “Stance detection based on ensembles of classifiers”, Programming and Computer Software, 45:5 (2019), pp. 228–240.
- D. Küçük, F. Can. “Stance detection: A survey”, ACM Computing Surveys, 53:1 (2021), 12, 37 pp.
- Demografic Dictionary, ed. Valentay D.I., Sovetskaya encyclopediya, M., 1985 (in Russian), 608 pp.
- I. E. Kalabikhina, E. P. Banin, I. A. Abduselimova, G. A. Klimenko, A. V. Kolotusha. “The measurement of demographic temperature using the sentiment analysis of data from the social network VKontakte”, Mathematics, 9:9 (2021), 987, 25 pp.
- V. Grigor’yev, D. Razumova. “Orthodox self-identification and the distribution of birthdays of VK users”, Demographic Review, 4 (2017), pp. 110–120 (in Russian).
- P. Sobhani, D. Inkpen, X. Zhu. “Exploring deep neural networks for multitarget stance detection”, Computational Intelligence, 35:1 (2019), pp. 82–97.
- M. Hardalov, A. Arora, P. Nakov, I. Augenstein. Cross-domain label-adaptive stance detection, 2021, 18 pp.
- C. Conforti, J. Berndt, M. T. Pilehvar, C. Giannitsarou, F. Toxvaerd, N. Collier. Will-They-Won’t-They: A very large dataset for stance detection on twitter, 2020, 10 pp.
- J. Vamvas, R. Sennrich. X-stance: A multilingual multi-target dataset for stance detection, 2020, 12 pp.
- L. Miao, M. Last, M. Litvak. “Twitter data augmentation for monitoring public opinion on COVID-19 intervention measures”, Proceedings of the 1st Workshop on NLP for COVID-19. V. 2, EMNLP 2020, 2020, 7 pp.
- C. Zong, F. Xia, W. Li, R. Navigli (eds.). Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing. V. 1: Long Papers, ACL, 2021
- D. T. Huerta, J. Hawkins, J. Brownstein, Y. Hswen. “Exploring discussions of health and risk and public sentiment in MA during COVID-19 pandemic mandate implementation: A twitter analysis”, SSM-Population Health, 15:1 (2021), 100851,9 pp.
- S. Abosedra, N. T. Laopodis, A. Fakih. “Dynamics and asymmetries between consumer sentiment and consumption in pre-and during-COVID-19 time: evidence from the US”, The Journal of Economic Asymmetries, 24 (2021), e00227.
- K. S. Hasan, V. Ng. “Stance classification of ideological debates: data, models, features, and constraints”, Proceedings of the Sixth International Joint Conference on Natural Language Processing, Asian Federation of Natural Language Processing, 2013, pp. 1348–1356.
- E. Sharma, K. Saha, S. K. Ernala, S. Ghoshal, M. De Choudhury. “Analyzing ideological discourse on social media: A case study of the abortion debate”, Proceedings of the 2017 International Conference of The Computational Social Science Society of the Americas, CSS 2017 (October 19–22, 2017, Santa Fe, NM, USA), ACM, 2017, ISBN 978-1-4503-5269-7, 8 pp.
- K. J. LaRoche, K. N. Jozkowski, B. L. Crawford, K. R. Haus. “Attitudes of US adults toward using telemedicine to prescribe medication abortion during COVID-19: A mixed methods study”, Contraception, 104:1 (2021), pp. 104–110.
- P. R. Roldán-Robles, A. C. Umaquinga-Criollo, J.A. García-Santillán, I. D. Herrera-Granda, á D. García-Santillán. “A conceptual architecture for content analysis about abortion using the twitter platform”, Revista Ibérica de Sistemas e Tecnologias de Informação, 2019, no. E22, pp. 363–374.
- N. Hopkins, S. Zeedyk, F. Raitt. “Visualising abortion: emotion discourse and fetal imagery in a contemporary abortion debate”, Social Science & Medicine, 61:2 (2005), pp. 393–403.
- E. Ntontis, N. Hopkins. “Framing a ’social problem’: emotion in anti-abortion activists’ depiction of the abortion debate”, British Journal of Social Psychology, 57:3 (2018), pp. 666–683.
- D.I.H. Farías, M. Lai, L. Mencarini, M. Mozzachiodi, V. Patti, E. Sulis, D. Vignoli. “Happy parents’ tweet? An exploration of 3 million Italian Twitter data”, 2017 International Population Conference (29 October–04 November 2017, Cape Town, South Africa), 2017, 5722, 4 pp.
- Z. Shah, P. Martin, E. Coiera, K. D. Mandl, A. G. Dunn. “Modeling spatiotemporal factors associated with sentiment on Twitter: synthesis and suggestions for improving the identification of localized deviations”, Journal of Medical Internet Research, 21:5 (2019), e12881.
- B. Mandel, A. Culotta, J. Boulahanis, D. Stark, B. Lewis, J. Rodrigue. “A demographic analysis of online sentiment during hurricane Irene”, Proceedings of the Second Workshop on Language in Social Media, LSM 2012, 2012, pp. 27–36.
- T. Daudert. “Exploiting textual and relationship information for fine-grained financial sentiment analysis”, Knowledge-Based Systems, 230 (2021), 107389, 12 pp.
- J. Devlin, M. Chang, K. Lee, K. Toutanova. Bert: pre-training of deep bidirectional transformers for language understanding, 2018, 14 pp.
- S. Ghosh, P. Singhania, S. Singh, K. Rudra, S. Ghosh. “Stance detection in web and social media: a comparative study”, International Conference of The Cross-Language Evaluation Forum for European Languages, Lecture Notes in Computer Science, vol. 11696, Springer, Cham, 2019, ISBN 978-3-030-28577-7, pp. 75–87.
- N. Loukachevitch, Y. Rubtsova. “Entity-oriented sentiment analysis of tweets: results and problems”, International Conference on Text, Speech, and Dialogue, Lecture Notes in Computer Science, vol. 9302, Springer, Cham, 2015, ISBN 978-3-319-24033-6, pp. 551–559.
- A. Golubev, N. Loukachevitch. “Improving results on Russian sentiment datasets”, Conference on Artificial Intelligence and Natural Language (October 7–9, 2020, Helsinki, Finland), Communications in Computer and Information Science, vol. 1292, Springer, Cham, 2020, ISBN 978-3-030-59081-9, pp. 109–121.
- A. Golubev, N. Loukachevitch. “Multi-Step transfer learning for sentiment analysis”, International Conference on Applications of Natural Language to Information Systems, Lecture Notes in Computer Science, vol. 12801, Springer, Cham, 2021, ISBN 978-3-030-80599-9, pp. 209–217.
- S. Smetanin, M. Komarov. “Deep transfer learning baselines for sentiment analysis in Russian”, Information Processing & Management, 58:3 (2021), 102484, 19 pp.
- Y. Kuratov, M. Arkhipov. Adaptation of deep bidirectional multilingual transformers for Russian language, 2019, 8 pp.
- C. Sun, L. Huang, X. Qiu. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence, 2019, 6 pp.
- S. V. Vychegzhanin, E. V. Kotelnikov. “Stance detection in Russian: a feature selection and machine learning based approach”, Supplementary Proceedings of AIST 2017, CEUR Workshop Proceedings, vol. 1975, 2017, pp. 166–177.
- E. Pronoza, P. Panicheva, O. Koltsova, P. Rosso. “Detecting ethnicity-targeted hate speech in Russian social media texts”, Information Processing & Management, 58:6(2021), 102674.
- M. B. Nasreen Taj, G. Girisha. “Insights of strength and weakness of evolving methodologies of sentiment analysis”, Global Transitions Proceedings, 2:2 (2021), pp. 157–162.
- D. J. Van de Kaa. “Europe’s second demographic transition”, Population Bulletin, 42:1 (1987), pp. 1–59.
- A. N. Raskhodchikov. “How to manage unmanaged?”, Seti 4.0. Upravleniye slozhnost’yu, VTsIOM, 2020, ISBN 978-5-906345-24-0, pp. 12–17 (in Russian).
- A. O. Makarentseva, N. I. Galiyeva, D. M. Rogozin. “Desire (Not) To Have Children in the Population Surveys”, The Monitoring of Public Opinion: Economic and Social Changes Journal, 2021, no. 4 (in Russian).
- I. E. Kalabikhina, E. P. Banin. “Database “Childfree (antinatalist) communities in the social network VKontakte””, Population and Economics, 5:2 (2021), pp. 92–96.
- I. E. Kalabikhina, E. P. Banin. “Database “Pro-family (pronatalist) communities in the social network VKontakte””, Population and Economics, 4:3 (2020), pp. 98–103.