Автомодельные локализованные конвективные структуры

Автор: Аристов Сергей Николаевич, Князев Денис Вячеславович

Журнал: Вестник Пермского национального исследовательского политехнического университета. Механика @vestnik-pnrpu-mechanics

Статья в выпуске: 3, 2013 года.

Бесплатный доступ

Рассмотрена задача о конвективном течении в слое вязкой жидкости, вызываемом ее локальным нагревом. Поиск решения задачи осуществлялся в рамках класса точных решений уравнений термогравитационной конвекции, обобщающего известный класс решений уравнений Навье-Стокса, к которому относятся вихри Бюргерса и Салливана. Для единичного числа Прандтля найдены два семейства автомодельных решений задачи, позволившие описать эволюцию двух различных типов радиально-локализованных вихрей. В обоих случаях радиальная компонента скорости на большом расстоянии от оси симметрии вихрей убывает обратно пропорционально радиусу, в то время как вертикальная составляющая скорости и температура в первом случае затухают как квадрат расстояния от оси, а во втором – экспоненциально. Для азимутальной скорости получено отдельное линейное уравнение с коэффициентами, зависящими от функции тока меридионального течения. В силу автомодельности это уравнение допускает частные решения с разделяющимися переменными, суперпозиция которых дает возможность описать перенос момента импульса (циркуляции, если она отлична от нуля) от бесконечности к центру вихря, а также проследить эволюцию произвольного локализованного начального возмущения азимутальной скорости. Под действием вихревой и тепловой диффузии рассмотренные вихревые образования затухают со временем. Полученные точные решения являются простыми, обозримыми моделями локализованных конвективных вихрей и ранее известны не были.

Еще

Конвекция, уравнения обербека–буссинеска, точные решения, локализованные вихри

Короткий адрес: https://sciup.org/146211491

IDR: 146211491

Статья научная