Beam support stiffness analytic solution for the first eigenfrequency and critical force

Автор: Rabetskaya O.I., Kudryavtsev I.V., Mityaev A.E.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 4 vol.23, 2022 года.

Бесплатный доступ

The problem of providing the required first natural frequency of bending vibrations of the beam under the action of a longitudinal force by introducing the necessary stiffness of the supports is discussed in the article. Considering and combining the equations of free vibrations of the beam and the equations describing the loss of its stability helped to obtain the operability condition based on providing a minimum given value of the first natural frequency of vibrations considering the action of the axial force. In this case, the achievement of the zero frequency of natural vibration corresponds to the loss of stability, which allows solving both problems. This task is mathematically complicated, and in the known scientific literature its solution is usually given only in graphical or tabular forms. The problem is in the nonlinear dependence of the coefficients of supports on the stiffness during vibrations and loss of stability. To solve this problem, the approximation of the nonlinear coefficients of the supports by the least squares method and the obtaining of quadratic approximating functions was used. As a result, the problem of determining the required stiffness of the supports brought to a fourth-degree resolving algebraic equation, for which an analytic solution exists. The obtained solution allows the stiffness of the beam supports, which provides the required value of the first natural frequency of vibrations of the beam and its first critical load in the form of external compressive force or temperature effects. Replacing the nonlinear dependencies of the support coefficients with the stiffness of the supports with simpler quadratic functions led to relatively simple analytic dependencies that allow the resolution equation to be transformed according to the particular problem being solved. At the same time, quadratic functions influenced the calculation error, to reduce which, the range of the support stiffness under consideration was limited and divided into three zones. The results of calculations using the proposed analytical solution were compared with numerical calculations using finite element method. The comparison of the calculation results showed an error of not more than 5 % for the considered range of stiffness of the supports, which is quite enough for engineering calculations of beam structures. To limit the error of the result, it is recommended that the stiffnesses of both supports be equal or of the same order.

Еще

Beam, elastic supports, vibrations, stability, first eigenfrequency, first critical force, analytical solution

Короткий адрес: https://sciup.org/148329663

IDR: 148329663   |   DOI: 10.31772/2712-8970-2022-23-4-708-720

Список литературы Beam support stiffness analytic solution for the first eigenfrequency and critical force

  • Zhang Z., Zimin V. N., Krylov A. V., Churilin S. A. [The definite questions of simulation of transformable space structures dynamics]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 1, P. 68–73 (In Russ.). DOI: 10.31772/2587-6066-2019-20-1-68-73.
  • Kudryavtsev I. V. Ensuring dynamic state of straight waveguide paths at heating by supports ar-rangement. Aerospace MAI Journal. 2021, Vol. 28, №. 4, P. 92–105. DOI: 10.34759/vst-2021-4-92-105. (In Russ.).
  • Timoshenko S. P., Yang D. Kh., Uiver U. Kolebaniya v inzhenernom dele [Vibrations in Engi-neering]. Moscow, Mashinostroenie Publ., 1985, 472 p.
  • Babakov I. M. Teoriya kolebaniy [Theory of vibrations]. Moscow, Drofa Publ., 2004, 591 p.
  • Zhuravlev V. F., Klimov D. M. Prikladnye metody v teorii kolebaniy [Applied methods in vibra-tion theory]. Мoscow, Nauka Publ., 1988, 328 p.
  • Il'in M. M., Kolesnikov K. S., Saratov Yu. S. Teoriya kolebaniy [Theory of vibrations]. Мoscow, MGTU Publ., 2001, 272 p.
  • Yablonskiy A. A., Noreyko S. S. Kurs teorii kolebaniy [Oscillation theory course]. Sankt-Peterburg, Lan' Publ., 2003, 254 p.
  • Panovko Ya. G. Vvedenie v teoriyu mekhanicheskikh kolebaniy. [Introduction to the theory of mechanical Vibrations]. Мoscow, Nauka Publ., 1991, 256 p.
  • Blekhman I. I. Vibratsionnaya mekhanika [Vibration mechanics]. Moscow, Fizmatlit Publ., 1994, 400 p.
  • Klaf V. K. Dinamika sooruzheniy [Dynamics of structures]. Moscow, Stroyizdat Publ., 1979, 320 p.
  • Doev V. S. Poperechnye kolebaniya balok [Transverse vibrations of beams]. Moscow, KNORUS Publ., 2016, 412 p.
  • Balachandran B. Vibrations. Toronto: Cengage Learning, 2009. 737 p.
  • Benaroya H., Nagurka M., Han S. Mechanical vibration. CRC Press: London, 2017, 602 p.
  • Leissa A. W. Vibration of continuous systems, McGraw-Hill: New York, 2011, 524 p.
  • Bottega W. J. Engineering vibrations. CRC Press: New York, 2006, 750 p.
  • Meirovitch L. Fundamentals of vibrations. McGraw-Hill,Book Co: New York, 2001, 826 p.
  • Clough R. E. Dynamics of Structures. McGraw-Hill College: New York, 1995, 752 p.
  • Shabana A. S. Theory of vibration. Springer-Verlag: New York, 2019, 382 p.
  • Geradin M., Rixen D.J. Mechanical vibrations. John Wiley & Sons: London, 2015, 617 p.
  • Rao S. Mechanical vibrations. Pearson Education Limited: London, 2018, 1295 p.
  • Hagedorn P. Vibrations and waves in continuous mechanical systems. John Wiley & Sons: New Jersey, 2007, 388 p.
  • Kelly S. G. Mechanical vibrations. Theory and applications. Cengage Learning: NY, 2012, 896 p.
  • Rades M. Mechanical vibrations II. Printech Publisher: Turin, 2010, 354 p.
  • Inman D. J. Engineering vibration, Pearson Education: NJ, 2014, 720 p.
  • Jazar R. N. Advanced vibrations. A modern approach. Springer: New York, 2013, 695 p.
  • Kelly S. G. Advanced vibration analysis. CRC Press: New York, 2007, 650 p.
  • Timoshenko S. P. Ustoychivost' sterzhney, plastin i obolochek [Stability of rods, plates and shells]. Moscow, Nauka Publ., 1971, 807p.
  • Alfutov N. A., Kolesnikov K. S. Ustoychivost' dvizheniya i ravnovesiya [Stability of move-ment and equilibrium]. Moscow, MGTU Publ., 2003, 256 p.
  • Farshad M. Stability of Structures. Elsevier Science B. V.: Amsterdam, 1994, 434 p.
  • Jerath S., Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells. John Wiley & Sons: Chichester, 2020, 672 p.
  • Timoshenko S. P., Gere J. M. Theory of Elastic Stability. Dover Publications: New York, 2009, 560 p.
  • Thomsen J. J. Vibrations and stability. New York, 2003, 420 p.
  • Yoo C. H. Stability of structures. Elsevier: London, 2011, 529p.
  • Ziemian R. D., Guide to Stability Design Criteria for Metal Structures. JohnWiley&Sons: NY, 2010, 1117 p.
  • Biderman V.L. Teoriya mekhanicheskikh kolebaniy [Theory of mechanical vibrations]. Moscow, Vysshaya shkola, 1980. 408 p.
  • Birger I. A., Panovko Ya. G. Prochnost', ustoychivost', kolebaniya [Strength, stability, vibra-tions]. Vol. 3. Moscow, Mashinostroenie Publ., 1988, 567 p.
  • Korenev B. G. Spravochnik po dinamike sooruzheniy [Structure dynamics guide]. Moscow, Stroyizdat Publ., 1972, 511 p.
  • Umanskiy A. A. Spravochnik proektirovshchika [Designer's Handbook]. Vol. 2. Moscow, Stroyizdat Publ., 1973, 415 p.
  • Blevins R. D. Formulas for dynamics, acoustics and vibration. John Wiley & Sons, Ltd: Chichester, 2016, 458 p.
  • Wang C. M. Exact solutions for buckling of structural members. CRC Press: New York, 2005, 212 p.
  • Galef A. E. Bending frequencies of compressed beams. Journal of the Acoustical Society of America. 1968, Vol. 44(2), P. 643. DOI: 10.1121/1.1911144.
  • Bokaian A. Natural frequencies of beams under compressive axial loads. Journal of Sound and Vibration. 1988, Vol. 126(1), P. 49–65. DOI: 10.1016/0022-460X(88)90397-5.
  • Kudryavtsev I. V., Rabetskaya O. I., Mityaev A. E. [Approximation of beam support coeffi-cient values at vibrations and buckling]. Siberian Aerospace Journal. 2022, Vol 23, No. 3, P. 461–474 (In Russ.).
  • Dreyper N. Smit G. Prikladnoy regressionnyy analiz [Applied regression analysis]. Moscow: Vil'yams Publ., 2016, 912 p.
  • Ivchenko G. I., Medvedev Yu. I. Matematicheskaya statistika [Mathematical statistics]. Мoscow, URSS, 2014, 352 p.
  • Nesmeev Yu. A. An approach to solution of algebraic equations of the third and fourth de-grees. Tomsk State University Journal of Mathematics and Mechanics. 2011, No. 1(13), P. 26–30. (In Russ.).
  • Nesmeev Yu. A. The development of an approach for the solution of the fourth degree algebra-ic equation. Tomsk State University Journal of Mathematics and Mechanics. 2013, No. 4(24), P. 29–38 (In Russ.).
Еще
Статья научная