Biobased nanoemulsion for blocking COVID-19 from accelerating Alzheimer's disease

Автор: Darrigo J.S.

Журнал: Juvenis scientia @jscientia

Рубрика: Краткие сообщения

Статья в выпуске: 4 т.7, 2021 года.

Бесплатный доступ

An effective therapeutic strategy to delay dementia could be based upon nanotargeting drug(s), using lipid nanocarriers (i.e., biobased nanoemulsion technology), toward a major serum amyloid A (SAA) receptor responsible for certain proinflammatory, SAA-mediated, cell signaling events. For example, other investigators have already confirmed that SR-BI receptors (or its human ortholog CLA-1) function as proinflammatory cell-surface SAA receptors, and additionally report that various ligands for CLA-1/SR-BI "efficiently compete" with SAA for CLA-1/SR-BI binding. A similar benefit (of "competitive binding") may well accompany the clinical intravenous use of the ("HDL-like") lipid nanocarriers (i.e., biobased nanoemulsion [see above]), which have already been repeatedly described in the peer-reviewed literature as a targeted (and SR-BI mediated) drug-delivery agent. To conclude, the above-proposed "competitive binding", between SAA and such biobased nanoemulsion(s), could assist/enhance the protective (ordinarily anti-inflammatory) role of HDL - as well as provide targeted drug-delivery to the (human) brain cells bearing CLA-1/SR-BI receptors. The first resulting advantage is that this (intravenous) colloidal-nanocarrier therapeutic makes it possible for various cell types, all potentially implicated in Alzheimer's disease and/or (late-onset) dementia, to be simultaneously sought out and better reached for localized drug treatment of brain tissue in vivo. A second major advantage is that this therapeutic-target approach has particular relevance to the current COVID-19 human pandemic; namely, immune response and excessive inflammation in COVID-19 infection may accelerate the progression of brain inflammatory neurodegeneration which, if effectively halted, might play a major role in reducing Alzheimer's disease pathology.


Alzheimer's disease, dementia, drug nanotargeting, inflammation, nanocarrier, nanoemulsion

Короткий адрес:

IDR: 14122888   |   DOI: 10.32415/jscientia_2021_7_4_5-11

Список литературы Biobased nanoemulsion for blocking COVID-19 from accelerating Alzheimer's disease

  • Talwar P, Kushwaha S, Gupta R, Agarwal R. Systemic Immune Dyshomeostasis Model and Pathways in Alzheimer's Disease. Front Aging Neurosci. 2019;11:290. DOI: 10.3389/fnagi.2019.00290.
  • Osorio C, Kanukuntla T, Diaz E, et al. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci. 2019;11:143. DOI: 10.3389/fnagi.2019.00143.
  • Guo JT, Yu J, Grass D, et al. Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J Neurosci. 2002;22(14):5900-5909. DOI: 10.1523/JNEUROSCI.22-14-05900.2002.
  • Birch AM, Katsouri L, Sastre M. Modulation of inflammation in transgenic models of Alzheimer's disease. J Neuroinflammation. 2014;11:25. DOI: 10.1186/1742-2094-11-25.
  • D'Arrigo JS. Nanotargeting of Drug(s) for Delaying Dementia: Relevance of Covid-19 Impact on Dementia. Am J Alzheimers Dis Other Demen. 2020;35:1-12. DOI: 10.1177/1533317520976761.
  • D'Arrigo JS. Nanotargeting dementia etiology: aiming drug nanocarriers toward receptors for vascular endothelium, serum amyloid A, inflammasomes, and oxidative stress. Nano Prog. 2020;2(3):25-30. DOI: 10.36686/Ariviyal.NP.2020.02.03.011.
  • Baranova IN, Vishnyakova TG, Bocharov AV, et al. Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activated protein kinases. J Biol Chem. 2005;280(9):8031-8040. DOI: 10.1074/jbc.M405009200.
  • Mullan RH, McCormick J, Connolly M, et al. A role for the high-density lipoprotein receptor SR-B1 in synovial inflammation via serum amyloid-A. Am J Pathol. 2010;176(4):1999-2008. DOI: 10.2353/ajpath.2010.090014.
  • Erickson MA, Jude J, Zhao H, et al. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. FASEB J. 2017;31(9):3950-3965. DOI: 10.1096/fj.201600857RRR.
  • Robert J, Stukas S, Button E, et al. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta. 2016;1862(5):1027-1036. DOI: 10.1016/j.bbadis.2015.10.005.
  • D'Arrigo JS. Stable Nanoemulsions: Self-Assembly in Nature and Nanomedicine. Elsevier: Amsterdam, 2011.
  • D’Arrigo JS. Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Medical Sci. 2017;5(4):29. DOI: 10.3390/medsci5040029.
  • D'Arrigo JS. Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci. 2018;251:44-54. DOI: 10.1016/j.cis.2017.12.002.
  • D'Arrigo JS. Treating Dementia Early: Limiting Cellular Damage in Brain Tissue. OBM Geriatrics. 2019;3(2):19. DOI: 10.21926/obm.geriatr.1902057.
  • D'Arrigo JS. Delaying Dementia: Targeted Brain Delivery Using Lipid Cubic Phases. OBM Neurobiology 2019;3(3):13. DOI: 10.21926/obm.neurobiol.1903040.
  • D'Arrigo JS. Targeting Early Dementia: Using Lipid Cubic Phase Nanocarriers to Cross the Blood⁻Brain Barrier. Biomimetics (Basel). 2018;3(1):4. DOI: 10.3390/biomimetics3010004.
  • Schuchardt M, Prüfer N, Tu Y, et al. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci Rep. 2019;9(1):3421. DOI: 10.1038/s41598-019-39846-3.
  • Dal Magro R, Simonelli S, Cox A, et al. The Extent of Human Apolipoprotein A-I Lipidation Strongly Affects the β-Amyloid Efflux Across the Blood-Brain Barrier in vitro. Front Neurosci. 2019;13:419. DOI: 10.3389/fnins.2019.00419.
  • D'Arrigo JS. Biomaterial to Improve Drug Delivery in Alzheimer's Disease: Linking Major Pathogenic Pathways. OBM Geriatrics. 2020;4(1):10. DOI: 10.21926/obm.geriatr.2001110.
  • D'Arrigo JS. Biomimetic Nanocarrier Targeting Drug(s) to Upstream-Receptor Mechanisms in Dementia: Focusing on Linking Pathogenic Cascades. Biomimetics (Basel). 2020;5(1):11. DOI: 10.3390/biomimetics501001121.
  • Sorokin AV, Karathanasis SK, Yang ZH, et al. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J. 2020;34(8):9843-9853. DOI: 10.1096/fj.202001451.
  • Naughton SX, Raval U, Pasinetti GM. Potential Novel Role of COVID-19 in Alzheimer's Disease and Preventative Mitigation Strategies. J Alzheimers Dis. 2020;76(1):21-25. DOI: 10.3233/JAD-200537.
  • Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12(1):69. DOI: 10.1186/s13195-020-00640-3.
  • Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci. 2019;11:56. DOI: 10.3389/fnagi.2019.00056.
  • Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab. 2016;36(10):1668-1685. DOI: 10.1177/0271678X16662043.
  • Sierksma A, Lu A, Mancuso R, et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol Med. 2020;12(3):e10606. DOI: 10.15252/emmm.201910606.
  • Srimanee A, Regberg J, Hällbrink M, et al. Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model. Int J Pharm. 2016;500(1-2):128-135. DOI: 10.1016/j.ijpharm.2016.01.014.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613-631. DOI: 10.1146/annurev-pharmtox-010814-124852.
  • Almer G, Mangge H, Zimmer A, Prassl R. Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging. Curr Med Chem. 2015;22(31):3631-3651. DOI: 10.2174/0929867322666150716114625.
  • Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol. 2014;71:147-163. DOI: 10.1016/bs.apha.2014.06.001.
  • Rea IM, Gibson DS, McGilligan V, et al. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol. 2018;9:586. DOI: 10.3389/fimmu.2018.00586.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487. DOI: 10.1038/nature21029.
  • Clarke LE, Liddelow SA, Chakraborty C, et al. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115(8):E1896-E1905. DOI: 10.1073/pnas.1800165115.
  • Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother. 2020;122:109691. DOI: 10.1016/j.biopha.2019.109691.
  • Cortes-Canteli M, Iadecola C. Alzheimer's Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):942-951. DOI: 10.1016/j.jacc.2019.10.062.
  • Gonçalves CA, Sesterheim P. Serum amyloid A protein has been undervalued as a biomarker of COVID-19. Diabetes Metab Res Rev. 2021;37(1):e3376. DOI: 10.1002/dmrr.3376.
  • Petrakis D, Margină D, Tsarouhas K, et al. Obesity a risk factor for increased COVID 19 prevalence, severity and lethality (Review). Mol Med Rep. 2020;22(1):9-19. DOI: 10.3892/mmr.2020.11127.
  • Zhang Q, Wei Y, Chen M, et al. Clinical analysis of risk factors for severe COVID-19 patients with type 2 diabetes. J Diabetes Complications. 2020;34(10):107666. DOI: 10.1016/j.jdiacomp.2020.107666.
  • Cheng L, Yang JZ, Bai WH, et al. Prognostic value of serum amyloid A in patients with COVID-19. Infection. 2020;48(5):715-722. DOI: 10.1007/s15010-020-01468-7.
  • Li H, Xiang X, Ren H, et al. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect. 2020;80(6):646-655. DOI: 10.1016/j.jinf.2020.03.035.
  • Fu J, Huang PP, Zhang S, et al. The value of serum amyloid A for predicting the severity and recovery of COVID-19. Exp Ther Med. 2020;20(4):3571-3577. DOI: 10.3892/etm.2020.9114.
  • Brown EE, Kumar S, Rajji TK, et al. Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer's Disease and Related Dementias. Am J Geriatr Psychiatry. 2020;28(7):712-721. DOI: 10.1016/j.jagp.2020.04.010.
  • Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020;2(2):fcaa069. DOI: 10.1093/braincomms/fcaa069.
  • Wei C, Wan L, Yan Q, et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2(12):1391-1400. DOI: 10.1038/s42255-020-00324-0.
  • Manosso LM, Arent CO, Borba LA, et al. Microbiota-Gut-Brain Communication in the SARS-CoV-2 Infection. Cells. 2021;10(8):1993. DOI: 10.3390/cells10081993.
  • Raith M, Kauffman SJ, Asoudeh M, et al. Elongated PEO-based nanoparticles bind the high-density lipoprotein (HDL) receptor scavenger receptor class B I (SR-BI). J Control Release. 2021;337:448-457. DOI: 10.1016/j.jconrel.2021.07.045.
  • Frere JJ. Serafini RA, Pryce KD. et al. A molecular basis of long COVID-19. Cell. 2021. (in press). DOI: 10.2139/ssrn.3885245.
Краткое сообщение