Biochemical response of Glycine max (L.) Merr. to cobalt and lead stress
Автор: Imtiyaz Sofi, Agnihotri Rajneesh K., Ganie Showkat A., Sharma Rajendra
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.10, 2014 года.
Бесплатный доступ
Background: Heavy metal pollution of soil has become a global concern, largely due to the fact that the heavy metals accumulated in plants may either directly or indirectly find their way into animals and human beings. Present study was carried out on the phytotoxicity of cobalt (Co) and lead (Pb) on biochemical constituents viz. chlorophyll a, b, carotenoids, proline, protein and carbohydrate content of three different varieties of Glycine max viz. SL-688, PS-1347, DS-9712 treated with 50, 100 and 150 µM concentrations. Results: The exposure of soybean varieties to Pb and Co resulted in the reduction of chlorophyll, carotenoids, carbohydrate and protein content and addition in proline content. Test plants were more sensitive to lead in comparison to cobalt. PS-1347 variety was found to be more susceptible to both the heavy metals. Maximum deleterious effect was observed at higher concentrations (100 & 150µM). However, an additional supply of nitrogen not only minimized the inhibitory effect of these two heavy metals but also decreased the proline content of plants. Conclusions: The findings of the present study indicate that effect of heavy metals with different treatments on biochemical content was significantly different at 0.05 level of probability. Soils contaminated by heavy metals probably lead to substantial losses in seed yield of soybean plant.
Biochemical parameters, glycine max, heavy metal stress, phytotoxicity
Короткий адрес: https://sciup.org/14323892
IDR: 14323892
Список литературы Biochemical response of Glycine max (L.) Merr. to cobalt and lead stress
- Abdul-Jaleel, C., Jayakumar, K., Chang-Xing, Z., Iqbal, M. (2009). Low concentration of cobalt increases growth, biochemical constituent’s, mineral status and yield in Zea mays. J. Sci. Res., 1, 128-137
- Akhionbare, S., Ebe, T., Akhionbare, W., Chukwuocha, N. (2010). Heavy metal uptake by corn (Zea mays L.) grown in contaminated soil. Res. J. Agric. Biol. Sci., 6, 993-997
- Asgharipour, M.R., Khatamipour, M., Razavi-omrani, M. (2011). Phytotoxicity on seed germination, early growth, proline and carbohydrate content in two wheat varieties. Adv. Env. Biol., 3, 786-792
- Azooz, M.M., Youessef, M.M., Al-Omair, M.A. (2011). Cooperative evaluation of zinc and lead and their synergistic effects on growth and some physiological response of Hassawi Okra (Hibiscus esculentus) seedlings. Am. J. Plant Physiol., 6 (6), 269-282
- Balestrasse, K.B., Benavides, M.P., Gallego, S.M., Tomaro, M.L. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct. Plant Biol., 30, 57-64
- Barcelo, J., Cabot, C., Poshenrieder, C. (1986). Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) II. Effects of Cd on endogenous abscisic acid levels. J. Plant Physiol., 125, 27-34
- Bavi, K., Kholdebarian, B., Moradshahi, A. (1988). Effect of cadmium on growth, protein content and activity in pea plants. Pak. J. Bot., 43 (3), 1467-1470
- Dar, S.H. (2009). Impact of lead and nickel on some physiological and biochemical activities of wheat (Triticum aestivum L.). M. Phil. Dissertation submitted to Dr. B.R. Ambedkar University, Agra, India, pp. 71
- Dubey, P.K. and Pandey, A. (2011). Effect of nickel on chlorophyll, lipid peroxidation and antioxidant enzyme activities in black gram (Vigna radiata) leaves. Int. J. Sci. Nat., 2 (2), 395-401
- El-sheekh, M.M., El-Naggar, A.H., Osman, M.E.H., El-Mazaly, E. (2003). Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium mimutum and Nitzehia perminuta. J. Plant Physiol., 15 (3), 159-166
- Fatima, T., Khan, M.A. and Choudhary, M. (2007). Impact of environmental pollution on cynobacterial proline content. J. Appl. Phycol., 19 (6), 625-629
- Gadd, G.M. and Griffith, A.J. (1978). Microorganisms and heavy metal toxicity. Microb. Ecol., 4, 303-317
- Gaweda, M. (2007). Changes in the contents of some carbohydrates in vegetables cumulating lead. Pol. J. Environ. Stud., 16, 57-62
- Hamid, N., Bukhari, N., Jawaid, F. (2010). Physiological responses of Phaseolous vulgaris to different lead concentrations. Pak. J. Bot., 42 (1), 239-246
- Hemalatha, S., Anburaj, A., Francis, K. (1997). Effect of heavy metals on certain biochemical constituents and nitrate reductase activity in Oryza sativa L. seedlings. J. Environ. Biol., 18, 313-319
- Jaleel, A.C., Jayakumar, K., Chang-Xing, Z., Azooz, M.M. (2009). Antioxidant potentials protect Vigna radiata (L) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics J., 2 (3), 120-126
- Jayakumar, K, and Vijayrengan, P. (2006). Alteration in carbohydrate metabolism of Vigna mung (L.) Hepper as affected by cobalt stress. J. Eco Toxicol. Environ. 3, 18-21
- Jayakumar, K., Abdul-Jaleel, C., Vijayarengan, P. (2007). Changes in growth, biochemical constituents and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk. J. Biol., 31,127-136
- Jayakumar, K. and Vijayarengan, P. (2009). Effect of different concentration of cobalt on pigment contents of soybean. Bot. Res. Int., 2 (3), 153-156
- John, R., Amhad, P., Gadgil, K., Sharma, S. (2009). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod., 3 (3), 65-76
- Lee, K.C., Cunningham, B.A., Chung, K.H., Baulsen, G.M., Liang, G.H., Moore, R.B. (1976). Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings Physiol. Plant., 36, 4-6
- Majer, B.J., Tscherko, D., Paschke, A. (2002). Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mut. Res., 515, 111-124
- Nagajyoti, P. C., Dinakar, N, Prasad, T.N., Suresh, C., Damodharam, T. (2008). Heavy metal toxicity: industrial effluent effect on groundnut (Arachis hypogaea L.) seedlings. J. Appl. Sci. Res., 4 (1), 110-121
- Nedelkoska, T. and Doran, M. (2000). Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Min. Engin., 13, 549-561
- Nies, D.H. (1999). Microbial heavy metal resistance. Appl. Microbiol. Biotechnol., 52, 730-750
- Nussbaum, S., Schmutz, D., Brunold, C. (1988). Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol., 88 (4), 1407-1410
- Salch, M. and Al-Garni, S. (2006). Increased heavy metal tolerance of cowpea plants by dual innoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr. J. Biotechnol., 5, 133-142
- Shakier, D., Rajneesh, A., Sharma, R., Showkat, A. (2010). Effect of nickel and lead induced variations in pigment composition of Triticum aestivum L. Res. J. Agric. Sci., 1 (2), 128-131
- Shivhare, L. and Sharma, S. (2012). Effect of toxic heavy metal contaminated soil on an ornamental plant Georgina wild. Toxicol., 2, 2-7
- Simon, L. (2001). Effect of natural zeolite and bentonite on the phytoavailability of heavy metal in chicory. In environmental restoration of metals contaminated soil ed; Iskander, I.K Chapter 13, Lewis Pubishers Boca Raton, pp. 261-271
- Singh, G., Agnihortri, R.K., Sharma, R., Ahmad, M. (2012). Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings. Int. J. Plant Physiol. Biochem., 10 (10), 30-32
- Tantrey, M.S. (2009). Studies on effect of Cd and Hg on some physiological and biochemical activities of Gram (Cicer arietinum L.). M. Phil. Dissertation submitted to Dr. B.R. Ambedkar University, Agra, pp. 71
- Wallace, A., Wallace, G.A., Cha, J.W. (1992). Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents-the special case of iron. J. Plant Nut., 15, 1589-1598
- Zhang, P., Zhou, Q., Sun, X., Wang, F., Jiang, H. (2008). The alleviative effects of AsA on the growth of rape seedlings under Cd stress. J. Agro-Env. Sci., 10 (06), 2362-2366