Биоиндикация атмосферного загрязнения с использованием флуоресцентного метода

Автор: Сорокина Г.А., Фидельская К.В., Даниленко А.Ю., Пахарькова Н.В.

Журнал: Вестник Красноярского государственного аграрного университета @vestnik-kgau

Рубрика: Экология

Статья в выпуске: 10, 2012 года.

Бесплатный доступ

В статье рассмотрены возможности количественной оценки уровня атмосферного загрязнения на основе воздействия на состояние зимнего покоя древесных растений. Для оценки глубины зимнего покоя был использован метод регистрации кривых термоиндуцированных изменений нулевого уровня флуоресценции (ТИНУФ) хлорофиллсодержащих тканей. Данное явление можно использовать как информативный биоиндикационный показатель степени загрязнения атмосферы вокруг промышленных предприятий и в городской среде.

Загрязнение атмосферы, биоиндикация, флуоресценция, зимний покой растений

Короткий адрес: https://sciup.org/14082056

IDR: 14082056

Текст научной статьи Биоиндикация атмосферного загрязнения с использованием флуоресцентного метода

Важнейшей составной частью экологического мониторинга окружающей природной среды является биомониторинг – система наблюдений, оценки и прогноза различных изменений в биоте, вызванных факторами антропогенного происхождения. Основной задачей биологического мониторинга является наблюдение за уровнем загрязнения биоты с целью разработки систем раннего оповещения, диагностики и прогнозирования [2].

Древесные насаждения являются одним из механизмов стабилизации экологической обстановки в городах. Роль зеленых насаждений в снижении негативного воздействия окружающей среды заключается в их способности нивелировать неблагоприятные для человека факторы природного и техногенного происхождения. Воздействие загрязнителей может происходить непосредственно на уровне фотосинтетического аппарата, при этом нарушается его структура и способность к функциональным перестройкам, что отражается на флуоресцентных показателях растений [3].

Оценка подобных изменений позволила разработать методы биологического контроля окружающей среды, где растения выступают в качестве биоиндикаторов и тест-организмов. Одним из методов оценки влияния загрязнителей на растения является изучение сезонной динамики с использованием метода регистрации и анализа термоиндуцированных изменений нулевого уровня флуоресценции (ТИНУФ) [4, 5].

Цели и задачи. Изучение сезонной динамики фотосинтетической активности растений тополя бальзамического (Populus balsamifera), произрастающих в условиях различного загрязнения воздушной среды, методом регистрации термоиндуцированных изменений нулевого уровня флуоресценции хлорофилла (ТИНУФ) для градации исследуемых районов г. Красноярска по уровню атмосферного загрязнения.

Методы и результаты исследований. Объектом исследования служили ткани феллодермы, взятые с неодревесневших побегов тополя бальзамического (Populus balsamifera). Образцы отбирались в пределах г. Красноярска с четырёх пробных площадей (ПП), разных по уровню атмосферного загрязнения, три из ко- торых являются территориями, подверженными воздействию загрязнителей, достаточно специфичных ввиду расположения на них промышленных предприятий разного профиля: р-н КрасТЭЦ (ПП2), прилежащая территория завода медицинских препаратов «КрасФарма» (ПП3) и р-н Предмостной площади (ПП4). В качестве условно чистого района выбрана территория парка «Роев ручей» (ПП1).

Для подтверждения различий уровня атмосферного загрязнения между исследуемыми пробными площадями был проведен физико-химический анализ смывов с листьев тополя бальзамического в июне 2011 года (табл.).

Результаты физико-химического анализа смывов с листьев тополя бальзамического

Район исследований

pH

Оптическая плотность

Электропроводность

Роев ручей (ПП 1 )

6,2± 0,1

0,06±0,01

0,17±0,01

КрасТЭЦ (ПП 2 )

6,0± 0,1

0,32±0,01

0,48±0,01

КрасФарма (ПП 3 )

6,0± 0,1

0,34±0,01

0,54±0,01

Предмостная площадь (ПП 4 )

5,4± 0,1

0,40±0,01

0,72±0,01

Полученные результаты показывают снижение рН от 6,2 на ПП 1 до 5,4 на ПП 4 , обусловленное высоким содержанием окислов серы и азота, поступающих в среду в составе выхлопных газов транспорта. Прозрачность растворов уменьшается от ПП 1 к ПП 4 за счет увеличения содержания в воздухе песка, сажи и других нерастворимых частиц. Электропроводность, связанная с увеличением содержания ионов, также растет от ПП 1 к ПП 4 . Таким образом, по данным физико-химического анализа смывов, изученные пробные площади расположились, относительно друг друга, по возрастанию уровня техногенного воздействия следующим образом: район парка «Роев ручей», район КрасТЭЦ, район «КрасФарма» и район Предмостной площади.

Регистрацию термоиндуцированных изменений нулевого уровня флуоресценции хлорофилла проводили на флуориметре «Фотон-11», разработанном в СФУ, в диапазоне от 20 до 80°С при скорости нагрева 8 градусов в минуту. В качестве показателя состояния растений и глубины покоя использовали отношение интенсивностей флуоресценции (R 2 =Фл нт /Фл вт ), соответствующих низкотемпературному и высокотемпературному максимумам на кривой ТИНУФ, а также наглядный вид кривых ТИНУФ [6, 7].

Теоретической основой метода является изменение агрегированности составляющих фотосинтетического аппарата, что проявляется в качественном изменении кривых ТИНУФ. В период активного метаболизма на графике регистрируется два пика – низкотемпературный, связанный с активностью хлорофилл-белкового комплекса фотосистемы 2, и высокотемпературный, обусловленный «разгоранием» хлорофилл-белкового комплекса фотосистемы 1, при инактивации её реакционных центров. При переходе в состояние зимнего покоя наблюдается качественное изменение формы кривой, проявляющееся в отсутствии низкотемпературного максимума, что приводит к снижению отношения низко- и высокотемпературного максимумов (R 2 ) флуоресценции.

Для количественной оценки состояния атмосферного воздуха в исследованных районах рассчитывался параметр А:

А=R o /R k, где R o – среднее значение отношения низкотемпературного к высокотемпературному максимуму в исследуемых районах (R 2 ); R k – среднее значение отношения низкотемпературного к высокотемпературному максимуму (R 2 ) в контрольном районе.

С октября 2008 года производилась регистрация кривых ТИНУФ феллодермы тополя бальзамического из районов г. Красноярска, разных по уровню атмосферного загрязнения.

В ходе изучения годовой динамики изменения показателя R 2 можно отметить, что минимальные значения данного показателя характерны для зимнего периода и соответствуют состоянию покоя. Чем больше величина R 2 , тем выше фотосинтетическая активность. Наибольшие различия для растений из районов города, разных по уровню загрязнений, отмечены в период перехода в состояние покоя (сентябрь – ноябрь) и выхода из него (апрель – май) (рис. 1).

Роев ручей

Крас ТЭЦ

КрасФарма

Предмостная

а

Роев ручей

КрасТЭЦ

КрасФарма

Предмостная

б

Рис. 1. Годовая динамика изменения величины R2 феллодермы тополя бальзамического из районов г. Красноярска, разных по уровню атмосферного загрязнения: а – 2009–2010 гг.; б – 2010–2011 гг.

Проведенная с октября 2008 года по июнь 2009 года регистрация кривых ТИНУФ показала, что в переходные периоды, исходя из величины показателя R 2 , пробные площади располагались относительно друг друга следующим образом: район Предмостной площади – наибольшая величина R 2 , далее – район КрасТЭЦ, район «КрасФарма» и наименьшее значение показателя R 2 отмечено у образцов из района парка «Роев ручей» (рис. 2).

Начиная с сентября 2009 г. (рис. 1), было отмечено увеличение отношения R 2 у растений из района «КрасФарма» относительно других районов по сравнению с предыдущим периодом исследований (рис. 2), что согласуется с наращиванием интенсивности производства на данном предприятии, подтверждаемым информацией СМИ [8]. Реакция растений в этом случае говорит о чувствительности предложенного метода к изменению уровня загрязнения.

В целом можно отметить, что уровень загрязнения в значительной степени влияет на длительность состояния покоя у растений и его глубину. В районах города с более высоким уровнем загрязнения был отмечен более поздний переход в состояние покоя и более ранний выход из него.

Рис. 2. Динамика величины R 2 феллодермы тополя бальзамического из районов г. Красноярска, разных по уровню загрязнения

Проведенное выведение растений из состояния покоя в лабораторных условиях позволило установить меньшую глубину состояния покоя у образцов, подверженных воздействию загрязнения (рис. 3). Это проявляется в том, что для феллодермы тополя, произрастающего в районе Предмостной площади, рост уровня R2, свидетельствующий о выходе растений из состояния покоя, наблюдается на 1–2-й день. Позже всего начинают выходить из покоя растения с территории парка «Роев ручей». Остальные пробные площади занимают

положение.

1,4

R2

1,2

0,8

0,6

0,4

0,2

mid

  •    Роев ручей

  •    КрасТЭЦ

  •    КрасФарма

  •    Предмостная

1 день 3 день 5 день 7 день 10день

а

1,4

R2

1,2

I Роев ручей

0,8

0,6

0,4

0,2

КрасТЭЦ

КрасФарма

Предмостная

1 день 3 день 5 день 7 день 10день

б

Рис. 3. Динамика R 2 феллодермы тополя бальзамического из районов г. Красноярска, разных по уровню атмосферного загрязнения, при выведении из состояния покоя в лабораторных условиях: а – 2009 год; б – 2011 год

Для количественной оценки влияния загрязнения на состояние растений был предложен параметр А исходя из следующих теоретических рассуждений. Основу биоиндикационных исследований с использованием метода регистрации термоиндуцированного изменения нулевого уровня флуоресценции составляет положение о том, что загрязнение атмосферного воздуха сокращает период зимнего покоя древесных растений [1, 4, 5]. Это проявляется в том, что в загрязненных районах уровень показателя R 2 выше по сравнению с чистыми (контрольными районами). Соответственно, чем выше значение параметра А (А=R o /R k ), тем выше уровень атмосферного загрязнения в данном районе.

При изучении четырех районов г. Красноярска с различным уровнем загрязнения атмосферного воздуха наибольшие значения параметра А получены для района Предмостной площади (рис. 4), что, согласно теоретическим положениям, свидетельствует о наиболее высоком уровне атмосферного загрязнения, далее в порядке убывания расположились районы КрасФарма, КрасТЭЦ и Роев ручей (рис. 4, б).

Роев ручей

^^^^» КрасТЭЦ

^^м • КрасФарма

Предмостная

Роевручей

КрасТЭЦ

КрасФарма

Предмостная

б

Рис. 4. Величина параметра А в период выхода тополя бальзамического из состояния покоя в лабораторных условиях: а – 2009 год; б – 2011 год

Однако такая последовательность установилась после наращивания интенсивности производства на предприятии Красфарма в сентябре 2009 года [8]. До этого периода времени район КрасТЭЦ занимал второе место по уровню атмосферного загрязнения (рис. 4, а).

Выводы. Таким образом, деревья, произрастающие в загрязненных районах, позже переходят в состояние покоя и раньше выходят из него. При этом глубина покоя у них на протяжении всего зимнего периода меньше, о чем можно судить по скорости выхода побегов из покоя в лабораторных условиях. Данное явление можно использовать как информативный биоиндикационный показатель степени загрязнения атмосферы вокруг промышленных предприятий и в городской среде. Предложенный метод удобен тем, что образцы растений для определения состояния покоя можно собирать зимой сразу в больших количествах и на больших территориях, поскольку, сохраняя ветки в замороженном виде, можно не опасаться их повреждения при транспортировке и хранении.

Введение расчетного параметра А позволяет количественно и наглядно оценить сравнительный уровень техногенного воздействия на растения, произрастающие в условиях различного загрязнения воздушной среды, что позволяет эффективно использовать метод регистрации термоиндуцированных изменений нулевого уровня флуоресценции для распределения районов города по уровню загрязнения.

Статья научная