Biomarkers for modeling of cancer-specific tumor-associated macrophages ex vivo

Автор: Sudarskikh T.S., Larionova I.V., Rakina M.A., Kzhyshkowska J.G.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Лабораторные и экспериментальные исследования

Статья в выпуске: 4 т.23, 2024 года.

Бесплатный доступ

Introduction. Tumor-associated macrophages (TAMs) are essential innate immune cells in the tumor microenvironment. TAMs can stimulate cancer cell proliferation and primary tumor growth, angiogenesis, lymphangiogenesis, cancer cell invasiveness in vessels and metastatic niche formation as well as support chemotherapy resistance. TAMs are phenotypically diverse both in various cancer localizations and in intratumoral heterogeneous compartments. Tumor-specific modeling of TAMs is necessary to understand the fundamental mechanism of pro- and anti-tumor activity, to test their interaction with existing therapies, and to develop TAM- targeted immunotherapy. Aim of study: To investigate cancer-specific transcriptomic features of ex vivo human TAM models. Material and Methods. Here we compared transcriptomic profiles of TAMs for breast, colorectal, ovarian, lung, and prostate cancers ex vivo . Human monocytes were isolated from buffy coats, and then stimulated by the tumor cell conditioned medium ex vivo . Using real-time PCR, we quantified the expression of key TAM biomarkers including inflammatory cytokines, scavenger-receptors, angiogenesis-regulating genes, and matrix remodeling factors.

Еще

Tumor-associated macrophages, m1/m2 classification, cytokines, scavenger-receptors

Короткий адрес: https://sciup.org/140307090

IDR: 140307090   |   DOI: 10.21294/1814-4861-2024-23-4-54-65

Список литературы Biomarkers for modeling of cancer-specific tumor-associated macrophages ex vivo

  • Malekghasemi S., Majidi J., Baghbanzadeh A., Abdolalizadeh J., Baradaran B., Aghebati-Maleki L. Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Adv Pharm Bull. 2020; 10(4): 556-65. https://doi.org/10.34172/apb.2020.066.
  • Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. https://doi.org/10.3389/fonc.2020.566511.
  • Munir M.T., Kay M.K., Kang M.H., Rahman M.M., Al-Harrasi A., Choudhury M., Moustaid-Moussa N., Hussain F., Rahman S.M. TumorAssociated Macrophages as Multifaceted Regulators of Breast Tumor Growth. Int J Mol Sci. 2021; 22(12): 6526. https://doi.org/10.3390/ijms22126526.
  • Boutilier A.J., Elsawa S.F. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021; 22(13): 6995. https://doi.org/10.3390/ijms22136995.
  • Wu K., Lin K., Li X., Yuan X., Xu P., Ni P., Xu D. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Front Immunol. 2020; 11. https://doi.org/10.3389/fimmu.2020.01731.
  • Monteiro L.N., Rodrigues M.A., Gomes D.A., Salgado B.S., Cassali G.D. Tumour-associated macrophages: Relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours. Vet J. 2018; 234: 119-25. https://doi.org/10.1016/j.tvjl.2018.02.016.
  • Hwang I., Kim J.W., Ylaya K., Chung E.J., Kitano H., Perry C., Hanaoka J., Fukuoka J., Chung J.Y., Hewitt S.M. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 2020; 18(1): 443. https://doi.org/10.1186/s12967-020-02618-z.
  • Zheng X., Weigert A., Reu S., Guenther S., Mansouri S., Bassaly B., Gattenlöhner S., Grimminger F., Pullamsetti S., Seeger W., Winter H., Savai R. Spatial Density and Distribution of Tumor-Associated Macrophages Predict Survival in Non-Small Cell Lung Carcinoma. Cancer Res. 2020; 80(20): 4414-25. https://doi.org/10.1158/0008-5472.CAN-20-0069.
  • Wei C., Yang C., Wang S., Shi D., Zhang C., Lin X., Liu Q., Dou R., Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019; 18(1): 64. https://doi.org/10.1186/s12943-019-0976-4.
  • Tan Q., Liu H., Xu J., Mo Y., Dai F. Integrated analysis of tumorassociated macrophage infiltration and prognosis in ovarian cancer. Aging (Albany NY). 2021; 13(19): 23210-32. https://doi.org/10.18632/aging.203613.
  • Genin M., Clement F., Fattaccioli A., Raes M., Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015; 15(1): 577. https://doi.org/10.1186/s12885-015-1546-9.
  • Cassetta L., Pollard J.W. Tumor-associated macrophages. Curr Biol. 2020; 30(6): 246-8. https://doi.org/10.1016/j.cub.2020.01.031.
  • Mulder K., Patel A.A., Kong W.T., Piot C., Halitzki E., Dunsmore G., Khalilnezhad S., Irac S.E., Dubuisson A., Chevrier M., Zhang X.M., Tam J.K.C., Lim T.K.H., Wong R.M.M., Pai R., Khalil A.I.S., Chow P.K.H., Wu S.Z., Al-Eryani G., Roden D., Swarbrick A., Chan J.K.Y., Albani S., Derosa L., Zitvogel L., Sharma A., Chen J., Silvin A., Bertoletti A., Blériot C., Dutertre C.A., Ginhoux F. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021; 54(8): 1883-900. https://doi.org/10.1016/j.immuni.2021.07.007.
  • Ma R.Y., Black A., Qian B.Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 2022; 43(7): 546-63. https://doi.org/10.1016/j.it.2022.04.008.
  • Dai X., Cheng H., Bai Z., Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer. 2017; 8(16): 3131-41. https://doi.org/10.7150/jca.18457.
  • Larionova I., Kiselev A., Kazakova E., Liu T., Patysheva M., Iamshchikov P., Liu Q, Mossel D.M., Riabov V., Rakina M., Sergushichev A., cancer cells. However, in order to achieve the full specificity of TAM phenotypes 3D modelling is needed to create the most physiologically relevant context for macrophage interactions with the extracellular matrix, cancer cells and other cells of tumor microenvironment. In this regard, the rapidly developing field of organoids is highly promising direction which will allow to recreate three-dimensional multicellular composition of tumor tissue, and also to model not only cancerspecific but also patient-specific TAM phenotypes and study their functions. Bezgodova N., Vtorushin S., Litviakov N., Denisov E., Koshkin P., Pyankov D., Tsyganov M., Ibragimova M., Cherdyntseva N., Kzhyshkowska J. Tumor-associated macrophages respond to chemotherapy by detrimental transcriptional reprogramming and suppressing stabilin-1 mediated clearance of EGF. Front Immunol. 2023; 14. https://doi.org/10.3389/fimmu.2023.1000497.
  • Sun N., Gao P., Li Y., Yan Z., Peng Z., Zhang Y., Han F., Qi X. Screening and Identification of Key Common and Specific Genes and Their Prognostic Roles in Different Molecular Subtypes of Breast Cancer. Front Mol Biosci. 2021; 8. https://doi.org/10.3389/fmolb.2021.619110.
  • Hollmén M., Roudnicky F., Karaman S., Detmar M. Characterization of macrophage - cancer cell crosstalk in estrogen receptor positive and triplenegative breast cancer. Sci Rep. 2015; 5(1): 9188. https://doi.org/10.1038/srep09188.
  • Kazakova E., Rakina M., Sudarskikh T., Iamshchikov P., Tarasova A., Tashireva L., Afanasiev S., Dobrodeev A., Zhuikova L., Cherdyntseva N., Kzhyshkowska J., Larionova I. Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers. Front Oncol. 2023; 13. https://doi.org/10.3389/fonc.2023.1058337.
  • Roblek M., Protsyuk D., Becker P.F., Stefanescu C., Gorzelanny C., Glaus Garzon J.F., Knopfova L., Heikenwalder M., Luckow B., Schneider S.W., Borsig L. CCL2 Is a Vascular Permeability Factor Inducing CCR2- Dependent Endothelial Retraction during Lung Metastasis. Mol Cancer Res. 2019; 17(3): 783-93. https://doi.org/10.1158/1541-7786.MCR-18-0530.
  • Schmall A., Al-Tamari H.M., Herold S., Kampschulte M., Weigert A., Wietelmann A., Vipotnik N., Grimminger F., Seeger W., Pullamsetti S.S., Savai R. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015; 191(4): 437-47. https://doi.org/10.1164/rccm.201406-1137OC.
  • Kazakova E., Iamshchikov P., Larionova I., Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol. 2023; 12. https://doi.org/10.3389/fonc.2022.1096897.
  • Larionova I., Kazakova E., Patysheva M., Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel). 2020; 12(6): 1411. https://doi.org/10.3390/cancers12061411.
  • Hourani T., Holden J.A., Li W., Lenzo J.C., Hadjigol S., O’BrienSimpson N.M. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol. 2021; 11. https://doi.org/10.3389/fonc.2021.788365.
  • Li X., Wang C.Y. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021; 13(1): 36. https://doi.org/10.1038/s41368-021-00146-0.
  • Longo S.K., Guo M.G., Ji A.L., Khavari P.A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021; 22(10): 627-44. https://doi.org/10.1038/s41576-021-00370-8.
  • Liu Z., Gao Z., Li B., Li J., Ou Y., Yu X., Zhang Z., Liu S., Fu X., Jin H., Wu J., Sun S., Sun S., Wu Q. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology. 2022; 11(1). https://doi.org/10.1080/2162402X.2022.2085432.
  • Lin C., Yang H., Zhao W., Wang W. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun. 2022; 626: 8-14. https://doi.org/10.1016/j.bbrc.2022.06.037.
  • Wu S.Z., Al-Eryani G., Roden D.L., Junankar S., Harvey K., Andersson A., Thennavan A., Wang C., Torpy J.R., Bartonicek N., Wang T., Larsson L., Kaczorowski D., Weisenfeld N.I., Uytingco C.R., Chew J.G., Bent Z.W., Chan C.L., Gnanasambandapillai V., Dutertre C.A., Gluch L., Hui M.N., Beith J., Parker A., Robbins E., Segara D., Cooper C., Mak C., Chan B., Warrier S., Ginhoux F., Millar E., Powell J.E., Williams S.R., Liu X.S., O’Toole S., Lim E., Lundeberg J., Perou C.M., Swarbrick A. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021; 53(9): 1334-47. https://doi.org/10.1038/s41588-021-00911-1.
  • Lee C.Z.W., Kozaki T., Ginhoux F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat Rev Immunol. 2018; 18(11): 716-25. https://doi.org/10.1038/s41577-018-0054-y. Erratum in: Nat Rev Immunol. 2018; 18(11): 726. https://doi.org/10.1038/s41577-018-0060-0.
  • Luque-Martin R., Mander P.K., Leenen P.J.M., Winther M.P.J. Classic and new mediators for in vitro modelling of human macrophages. J Leukoc Biol. 2021; 109(3): 549-60. https://doi.org/10.1002/JLB.1RU0620-018R.
  • Lopez-Yrigoyen M., Cassetta L., Pollard J.W. Macrophage targeting in cancer. Ann N Y Acad Sci. 2021; 1499(1): 18-41. https://doi.org/10.1111/nyas.14377.
  • Wang S., Yang Y., Ma P., Huang H., Tang Q., Miao H., Fang Y., Jiang N., Li Y., Zhu Q., Tao W., Zha Y., Li N. Landscape and perspectives of macrophage-targeted cancer therapy in clinical trials. Mol Ther Oncolytics. 2022; 24: 799-813. https://doi.org/10.1016/j.omto.2022.02.019.
  • Benner B., Scarberry L., Suarez-Kelly L.P., Duggan M.C., Campbell A.R., Smith E., Lapurga G., Jiang K., Butchar J.P., Tridandapani S., Howard J.H., Baiocchi R.A., Mace T.A., Carson W.E. 3rd. Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer. 2019; 7(1): 140. https://doi.org/10.1186/s40425-019-0622-0.
  • Stewart D.A., Yang Y., Makowski L., Troester M.A. Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol Cancer Res. 2012; 10(6): 727-38. https://doi.org/10.1158/1541-7786.MCR11-0604.
  • Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. https://doi.org/10.3390/cancers13133253.
  • Vogel D.Y., Glim J.E., Stavenuiter A.W., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology. 2014; 219(9): 695-703. https://doi.org/10.1016/j.imbio.2014.05.002.
  • Rey-Giraud F., Hafner M., Ries C.H. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One. 2012; 7(8). https://doi.org/10.1371/journal.pone.0042656.
  • Nielsen M.C., Andersen M.N., Møller H.J. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology. 2020; 159(1): 63-74. https://doi.org/10.1111/imm.13125.
  • Golabek A., Kaczmarek M., Dondajewska E., Sakrajda K., Mackiewicz A., Dams-Kozlowska H. Application of a three-dimensional (3D) breast cancer model to study macrophage polarization. Exp Ther Med. 2021; 21(5): 482. https://doi.org/10.3892/etm.2021.9913.
  • Rebelo S.P., Pinto C., Martins T.R., Harrer N., Estrada M.F., Loza-Alvarez P., Cabeçadas J., Alves P.M., Gualda E.J., Sommergruber W., Brito C. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018; 163: 185-97. https://doi.org/10.1016/j.biomaterials.2018.02.030.
  • Helleberg Madsen N., Schnack Nielsen B., Larsen J., Gad M. In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell Immunol. 2022; 378. https://doi.org/10.1016/j.cellimm.2022.104574.
Еще
Статья научная