Biomechanical analysis of a mouthguard manufactured from polyamide reinforced by nanostructured titanium dioxide
Автор: Gridina V.O., Rogozhnikov G.I., Karakulova Yu.V., Shuliatnikova O.A., Nikitin V.N., Kilina P.N.
Журнал: Российский журнал биомеханики @journal-biomech
Статья в выпуске: 1 (83) т.23, 2019 года.
Бесплатный доступ
The results of biomechanical modelling of a mouthguard from polyamide reinforced by nanostructured titanium dioxide (5 and 10 wt. %) used in the treatment of the effects of bruxism associated with myofunctional maxillofacial area resulting in not only pain in muscles, and also aesthetic and functional disorders due to the change of the occlusion are presented. The literature data emphasize an increase in the strength properties of a mouthguard material in cases of injection of titanium dioxide nanotubes into this material. The modulus of elasticity almost linearly increases from the value of the modulus of elasticity of mouthguard polymer material relative to the amount of injected titanium dioxide (from 0 to 5 wt. %). At a further increase in the proportion of titanium dioxide introduced (10 wt. %), the modulus of elasticity is not increased further. The authors associate this with an unsatisfied method of homogeneous introduction of titanium dioxide, which apparently was distributed as granules, which became the place of heterogeneity and the appearance of stress concentrators, which affected the decrease in tensile strength (more for 5 and 10 wt. %) and the modulus of elasticity (in a larger proportion for the case of 10 wt. %). The obtained data on the stresses in amouthguardof polyamide reinforced by nanostructured titanium dioxide (5 and 10 wt. %) indicate that they withstand the stresses imposed on it during the compression of the jaws, which makes it possible to use it in treating the effects of bruxism.
Prosthetic dentistry, biomechanical modelling, mouthguard, nanostructured titanium dioxide, bruxism
Короткий адрес: https://sciup.org/146281845
IDR: 146281845 | DOI: 10.15593/RZhBiomeh/2019.1.08