Биосенсоры на основе одномерных модифицированных углеродных наноструктур

Автор: Дрючков Е.С., Борознин С.В., Запороцкова И.В., Эль Занин А.Р., Борознина Н.П., Звонарева Д.А.

Журнал: НБИ технологии @nbi-technologies

Рубрика: Нанотехнологии и наноматериалы

Статья в выпуске: 1 т.18, 2024 года.

Бесплатный доступ

В данной статье представлены результаты теоретического исследования свойств двух типов углеродных нанотрубок («кресло» и «зигзаг») с использованием квантово-химического метода теории функционала плотности в рамках модели молекулярного кластера. Исследован процесс внешней адсорбции оксидов железа и никеля на поверхности нанотрубок. Также для эффективности использования углеродных нанотрубок, содержащих замещающие атомы бора, в качестве биосенсоров, проведено изучение их взаимодействия с молекулой ацетона. Определены основные энергетические характеристики этих процессов, такие как расстояние и энергия адсорбции. Для этого был проведен модельный эксперимент по добавлению оксидов железа и никеля, а также взаимодействию биосенсорного нанодатчика на основе бороуглеродной нанотрубки с молекулой ацетона.

Еще

Сенсорная активность, бороуглеродные нанотрубки, наноструктуры, медицинские технологии

Короткий адрес: https://sciup.org/149145786

IDR: 149145786   |   DOI: 10.15688/NBIT.jvolsu.2024.1.1

Список литературы Биосенсоры на основе одномерных модифицированных углеродных наноструктур

  • Aasi A., Aasi E., Mehdi Aghaei S., Panchapakesan B. CNT Biodevices for Early Liver Cancer Diagnosis Based on Biomarkers Detection – A Promising Platform. Journal of Molecular Graphics and Modelling, 2022, vol. 114, p. 108208.
  • Abedi R., Raoof J.B., Mohseni M., Hashkavayi A.B. Sandwich-Type Electrochemical Aptasensor for Highly Sensitive and Selective Detection of Pseudomonas Aeruginosa Bacteria Using a Dual Signal Amplification Strategy. Bioelectrochemistry, 2023, vol. 150, p. 108332.
  • Ahmed S.R., Kim J., Suzuki T., Lee J., Park E.Y. Enhanced Catalytic Activity of Gold Nanoparticle- Carbon Nanotube Hybrids for Infiuenza Virus Detection. Biosens. Bioelectron., 2016, vol. 85, pp. 503-508. DOI: 10.1016/ j.bios.2016.05.050
  • Ali M.R., Bacchu M.S., Das S. et al. Label Free Flexible Electrochemical DNA Biosensor for Selective Detection of Shigella Flexneri in Real Food Samples. Talanta, 2023, vol. 253, p. 123909.
  • Behoftadeh F., Faezi Ghasemi M., Mojtahedi A., Issazadeh K., Golshekan M., Alaei S. Development of a Newly Designed Biosensor Using Multi-Walled Carbon Nanotubes (MWCNTs) with Gold Nanoparticles (AuNPs) in the Presence of Acetaminophen for Detection of Escherichia coli. Archives of Microbiology, 2023, vol. 205, no. 2, p. 70.
  • Cabral D.G.A., Lima E.C.S., Dutra R.F. A Label- Free Electrochemical Immunosensor for Hepatitis B Based on Hyaluronic Acid-Carbon Nanotube Hybrid Film. Talanta, 2016, vol. 148, pp. 209-215. DOI: 10.1016/j.talanta.2015.10.083
  • Cui F., Zhou Z., Zhou H.S. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors, 2020, vol. 20 (4), p. 996. DOI: 10.3390/s20040996
  • Ertaş T., Dinç B., Üstünsoy R., Eraslan H., Ergenç A.F., Bektaş M. Novel Electrochemical Biosensor for Escherichia coli Using Gold-Coated Tungsten Wires and Antibody Functionalized Short Multiwalled Carbon Nanotubes. Instrumentation Science & Technology, 2023, pp. 1-16.
  • Fu Y. Chemiresistive Biosensors Based on Carbon Nanotubes for Label-Free Detection of DNA Sequences Derived from Avian Influenza Virus H5N1. Sensors and Actuators B Chemical, 2017, vol. 249, pp. 691-699. DOI: 10.1016/j.snb.2017.04.080
  • Ghanei Agh Kaariz D., Darabi E., Elahi S.M. Fabrication of Au/ZnO/MWCNTs Electrode and Its Characterization for Electrochemical Cholesterol Biosensor. Journal of Theoretical and Applied Physics, 2020, vol. 14, pp. 339-348.
  • Han D.K., Li C.A., Song S.H. et al. Electroanalytical Biosensor Based on GOx/FCA/PEGModified SWCNT Electrode for Determination of Glucose. Journal of Analytical Science and Technology, 2023, vol. 14, no. 1, p. 9.
  • Hassan R.Y.A. et al. Carbon Nanotube-Based Electrochemical Biosensors for Determination of Candida albicanss quorum Sensing Molecule. Sensors and Actuators B: Chemical, 2017, vol. 244, pp. 565-570.
  • Hassan R.Y.A., Wollenberger U. Direct Determination of Bacterial Cell Viability Using Carbon Nanotubes Modified Screen Printed Electrodes. Electroanalysis, 2019, vol. 31, no. 6, pp. 1112-1117.
  • Huang G.K. et al. Acid-Treated Carbon Nanotubes/Polypyrrole/Fluorine-Doped Tin Oxide Electrodes with High Sensitivity for Saliva Glucose Sensing. Diamond and Related Materials, 2022, vol. 129, p. 109385.
  • Kavacık M., Kilic M.S. Square Wave Voltammetric Detection of Cholesterol with Biosensor Based on Poly (Styreneеcaprolactone)/MWCNTs Composite. Biotechnology and Applied Biochemistry, 2023, vol. 70, iss. 3, pp. 1137-1148.
  • Li L., Liu X., Wei T., Wang K., Zhao Z., Cao J., Liu Y., Zhang Z. Carbon Nanotube Field-Effect Transistor Biosensor with an Enlarged Gate Area for Ultra-Sensitive Detection of a Lung Cancer Biomarker. ACS Applied Materials & Interfaces, 2023, vol. 15, no. 22, pp. 27299-27306.
  • Lin M.H., Gupta S., Chang C. et al. Carbon Nanotubes/Polyethylenimine/Glucose Oxidase as a Non-Invasive Electrochemical Biosensor Performs High Sensitivity for Detecting Glucose in Saliva. Microchemical Journal, 2022, vol. 180, p. 107547.
  • Liu J., Sun Sh., Shang H., Lai J., Zhang L. Electrochemical Biosensor Based on Bienzyme and Carbon Nanotubes Incorporated into an Oscomplex Thin Film for Continuous Glucose Detection in Human Saliva. Electroanalysis, 2016, vol. 28, no. 9, pp. 2016-2021.
  • Lu Q. Flexible Paper-Based Ni-MOF Composite/ AuNPs/CNTs Film Electrode for HIV DNA Detection. Biosens. Bioelectron., 2021, vol. 184, p. 113229. DOI: 10.1016/ j.bios.2021.113229
  • Ma S., Zhang Y., Ren Q., Wang X., Zhu J., Yin F., Li Z., Zhang M. Tetrahedral DNA Nanostructure Based Biosensor for High-Performance Detection of Circulating Tumor DNA Using All-Carbon Nanotube Transistor. Biosensors and Bioelectronics, 2022, vol. 197, p. 113785.
  • Ma Y., Shen X.-L., Zeng Q., Wang H.-S.,Wang L.-S. A Multi-Walled Carbon Nanotubes Based Molecularly Imprinted Polymers Electrochemical Sensor for the Sensitive Determination of HIV-p24. Talanta, 2017, vol. 164, pp. 121-127. DOI: 10.1016/j.talanta.2016.11.043
  • Magar H.S., Hassan R.Y.A., Abbas M.N. Non-Enzymatic Disposable Electrochemical Sensors Based on CuO/Co3O4@ MWCNTs Nanocomposite Modified Screen-Printed Electrode for the Direct Determination of Urea. Scientific Reports, 2023, vol. 13, no. 1, p. 2034.
  • Makableh Y., Athamneh T., Ajlouni M., Hijazi S., Alnaimi A. Enhanced Response and Selective Gold Nanoparticles/Carbon Nanotubes Biosensor for the Early Detection of HER2 Biomarker. Sensors and Actuators Reports, 2023, vol. 5, p. 100158.
  • Nandeshwar R., Illa M.P., Khandelwal M., Tallur S. Enzymatic Degradation of Bacterial Cellulose Derived Carbon Nanofibers (BC-CNF) by Myeloperoxidase (MPO): Performance Evaluation for Biosensing. Biosensors and Bioelectronics: X, 2022, vol. 12, p. 100252.
  • Nandeshwar R., Tallur S. Electrochemical Detection of Myeloperoxidase (MPO) in Blood Plasma with Surface-Modified Electroless Nickel Immersion Gold (ENIG) Printed Circuit Board (PCB) Electrodes.medRxiv, 2023. DOI: https://doi.org/10.1101/2023.09.03.23295003
  • Nawaz M.A.H., Majdinasab M., Latif U., Nasir M., Gokce G., Anwar M.W., Hayat A. Development of a Disposable Electrochemical Sensor for Detection of Cholesterol Using Differential Pulse Voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 2018, vol. 159, pp. 398-405.
  • Qu X. et al. A Self-Powered Biosensing System Based on Triboelectric Nanogenerator for Rapid Bacterial DNA Detection. Sensors and Actuators B: Chemical, 2023, vol. 390, p. 133917.
  • Shao W., Shurin M.R., Wheeler S.E., He X., Star A. Rapid Detection of SARS-CoV-2 Antigens Using HighPurity Semiconducting Single-Walled Carbon NanotubeBased Field-Effect Transistors. ACS Appl. Mater. Interfaces, 2021, vol. 13 (8), pp. 10321-10327. DOI: 10.1021/acsami.0c22589
  • Shumeiko V., Zaken Yu., Hidas G., Paltiel Y., Bisker G., Shoseyov O. Peptide-Encapsulated Single- Wall Carbon Nanotube-Based Near-Infrared Optical Nose for Bacteria Detection and Classification. IEEE Sensors Journal, 2022, vol. 22, no. 7, pp. 6277-6287.
  • Silva M.N.T., Rocha R.G., Richter E.M., Munoz R.A.A., Nossol E. Nickel Oxy-Hydroxy/Multi- Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor. Biosensors, 2023, vol. 13, no. 6, p. 646.
  • Singh A.K., Jaiswal N., Tiwari I., Ahmad M., Silva S.R.P. Electrochemical Biosensors Based on in Situ Grown Carbon Nanotubes on Gold Microelectrode Array Fabricated on Glass Substrate for Glucose Determination. Microchimica Acta, 2023, vol. 190, no. 2, p. 55.
  • Somvanshi S.B., Kharat B., Saraf T.S., Somwanshi S.B., Shejul S.B., Jadhav K.M. Multifunctional Nanomagnetic Particles Assisted Viral RNA-Extraction Protocol for Potential Detection of COVID-19. Mater. Res. Innovations, 2021, vol. 25 (3), pp. 169-174. DOI: 10.1080/14328917.2020.1769350
  • Sriwichai S., Phanichphant S. Fabrication and Characterization of Electrospun Poly (3- Aminobenzylamine)/Functionalized Multi-Walled Carbon Nanotubes Composite Film for Electrochemical Glucose Biosensor. Express Polymer Letters, 2022, vol. 16, no. 4, pp. 439-450.
  • Sun Q., Ma C., Li W., Li X., Sakamoto K., Liu X., Okamoto A., Minari T. Fully Printed Low- Voltage Field-Effect Transistor Biosensor Array for One-Drop Detection of Shewanella onedensis MR-1 Bacteria. ACS Applied Electronic Materials, 2023, vol. 5, no. 5, pp. 2558-2565.
  • Thanihaichelvan M. Selective and Electronic Detection of COVID-19 (Coronavirus) Using Carbon Nanotube Field Effect Transistor-Based Biosensor: A Proof-Of-Concept Study. Mater. Today: Proc., 2021, p. S2214785321035641. DOI: 10.1016/j.matpr.2021.05.011
  • Tian J. A High Sensitive Electrochemical Avian Infiuenza Virus H7 Biosensor Based on CNTs/ MoSx Aerogel. Int. J. Electrochem. Sci., 2017, vol. 12 (1), pp. 2658-2668. DOI: 10.20964/2017.04.30
  • Villamizar R.A., Maroto A., Rius F.X. Improved Detection of Candida Albicans with Carbon Nanotube Field-Effect Transistors. Sensors and Actuators B: Chemical, 2009, vol. 136, no. 2, pp. 451-457.
  • Wang C. Self-Powered Biosensing System Driven by Triboelectric Nanogenerator for Specific Detection of Gram-Positive Bacteria. Nano Energy. 2022, vol. 93, p. 106828.
  • Zhang W., Du Y., Wang M.L. On-Chip Highly Sensitive Saliva Glucose Sensing Using Multilayer Films Composed of Single-Walled Carbon Nanotubes, Gold Nanoparticles, and Glucose Oxidase. Sensing and Bio-Sensing Research, 2015, vol. 4, pp. 96-102.
Еще
Статья научная