Biosynthesis of bacterial cellulose by мedusomyces gisevii

Бесплатный доступ

Bacterial cellulose is an organic material that is synthesized by microorganisms extracellularly. Bacterial cellulose can be used in various industries. Especially, bacterial cellulose has found its application basically in medicine. The production of bacterial cellulose is a complicated and long process. The principal criterion for the process to be successful is bacterial cellulose to be obtained in a higher yield. Russia is lacking an operating facility to produce bacterial cellulose; therefore, research in this art is the hottest topic. This paper reports details on the biosynthesis of bacterial cellulose by the Мedusomyces gisevii microbe and investigates the effect of active acidity level on the bacterial cellulose synthesis. It was found that the synthesis of bacterial cellulose by the symbiosis of Мedusomyces gisevii does not require pH to be artificially maintained. The substrate concentration effect on the bacterial cellulose yield was also examined. The bacterial cellulose synthesis was witnessed to be conjugated with the acetic-acid bacterium growth, and conditions corresponding to a maximal bacterial cells number correspond to a maximum microbial cellulose yield. The maximal bacterial cell number was observed when the glucose concentration in the broth was 20 g/l; as the glucose concentration was increased to 55 g/L, the acetic-acid bacterial cell number diminished in inverse proportion to the substrate concentration, which is likely due to the substrate inhibition. A glucose concentration of 15 g/l and lower is not enough, causing a decrease in the cell number, which is directly proportional to a decline in the substrate concentration. The maximum bacterial cellulose yield (8.7-9.0 %) was achieved at an initial glucose concentration of 20-25 g/l in the broth. The conditions providing the maximum bacterial cellulose yield gave an enlarged bacterial cellulose specimen 605 g in weight. The physicochemical properties of the bacterial celluloses were studied. The structure and purity of the bacterial celluloses were confirmed by infrared spectrophotometry.

Еще

Короткий адрес: https://sciup.org/14040456

IDR: 14040456

Статья научная