Satellite-borne microprocessor control system with improve upset tolerance
Автор: Udalov D.V.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 1 т.16, 2015 года.
Бесплатный доступ
Modern innovative trends in the development of space equipment are associated with the use of microprocessor technology in onboard hardware. Therefore, control systems, direct control of the device based on internal algorithms are introduced as the parts of the equipment microprocessor. That allows you to go to a distributed control principle on board the spacecraft, which is based on the idea of the localization of the control functions on board, inside the devices themselves. In particular, the establishment of a power processing unit of the new generation for electric propulsion system in SC “Scientific&Industrial Centre “Polyus” (Tomsk) developed satellite-borne microprocessor digital interface and control unit, by integrating in which said system is not only able to improve weight and overall dimensions but also to expand functionalities. However, the growth requirements for space vehicles in general leads to the need to improve onboard microprocessor control system.These requirements are not possible without the use of modern integrated circuits with very large-scale integration level produced by nanometer technology standards. It is known that such schemes are made of submicron technology, unlike micron are more sensitive to single effects caused by exposure to heavy charged particles of space, which, in turn, necessitates the adoption of a number of special measures to ensure the stability of control systems. This article discusses the ways to increase upset immunity microprocessor control systems onboard equipment spacecraft. The ways of solving the problems associated with the selection of electronic components, circuit design and architectural solutions for resistance to single effects caused by heavy charged particles of space are shown. We offer to implement the architecture of a microprocessor control system with advanced features, high performance and enhanced upset immunity.
Spacecraft, satellite-borne microprocessor control system, very large scale integrated circuits, heavy charged particles, upset tolerance, single event effects
Короткий адрес: https://sciup.org/148177397
IDR: 148177397