Cathodoluminescence of conodont elements

Автор: Zhuravlev A.

Журнал: Вестник геонаук @vestnik-geo

Рубрика: Научные статьи

Статья в выпуске: 7 (343), 2023 года.

Бесплатный доступ

Conodont elements are used as a geochemical archive of seawater. Some compositional features of conodont elements reflect conodont ecology and trophic structure of Palaeozoic pelagic ecosystems. However, the screening of conodont elements prior to geochemical and/or isotopic studies is a real problem. This study evaluates SEM cathodoluminescence (SEM-CL), which is very sensitive to the REE and Mn content of apatite, for the detection of traces of secondary transformation in the composition of conodont bioapatite. The SEM-CL of conodont elements is similar to that of unaltered shark teeth (blue-violet), but differs significantly from that of fossil vertebrate teeth (orange-red). Thermal alteration has little effect on the SEM-CL. Elements with a CAI of 1-1.5 show a redder and more intense CL than elements with a CAI of 5. In the case of corrosion of the conodont element surface in carbonate host rocks, the CL of the outer parts of the conodont element become reddish due to invasion of the carbonate material. Conodont elements from the clay host rock show deep purple SEM-CL. Thus, SEM-CL allows detection of the results of secondary processes in conodont mineralised tissues, including enrichment by REE and/or Mn, corrosion and contamination by carbonate material. This method can be used to screen significantly altered samples prior to chemical and isotopic analyses.

Еще

Conodonts, cathodoluminescence, mineralised tissues, taphonomy

Короткий адрес: https://sciup.org/149143565

IDR: 149143565   |   DOI: 10.19110/geov.2023.7.4

Список литературы Cathodoluminescence of conodont elements

  • Balter V., Martin J. E., Tacail T., Suan G., Renaud S., Girard C. Calcium stable isotopes place Devonian conodonts as first level consumers // Geochemical Perspectives. 2019. 10. P. 36—39. DOI: 10.7185/geochemlet.1912
  • Barnett W. A., Wise M. L. H., & Jones E. C. Cathodoluminescence of biological molecules, macromolecules and cells // Journal of Microscopy. 1975. 105(3). P. 299—303. DOI: 10.1111/j.1365-2818.1975.tb04063.x
  • Götze J. Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences // Microscopy and Microanalysis. 2012. 18. P. 1270—1284. DOI: 10.1017/S1431927612001122
  • Griffin J. M., Montañez I. P., Glessner J. J. G., Chen J., Willmes M. Geologic variability of conodont strontium isotopic composition quantified by laser ablation multiple collection inductively coupled plasma mass spectrometry // Palaeogeography, Palaeoclimatology, Palaeoecology. 2021. 568. 110308. DOI: 10.1016/j.palaeo.2021.110308
  • Habermann D., Götze J., Neuser R. & Richter D. K. The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite // Zentralbl. Geol. Paläont. 1997. 1(10—12). P. 1275—1284.
  • Habermann D., Neuser R. D., & Richter D. K. Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art // Sedimentary Geology. 1998. 116(1—2). P. 13—24. DOI: 10.1016/s0037-0738(97)00118-8
  • Harris A. G. & Sweet W. C. Mechanical and chemical techniques for separating microfossils from rock. sediment and residue matrix. In: Feldmann R. M., Chapman R. E. & Hannibal J. T. (Eds), Paleotechniques // Paleontol. Soc. Spec. Publ. 1989. 4. P. 70—86.
  • Joachimski M. M., Buggisch W. Conodont apatite δ18O signatures indicate climate cooling as a trigger of the Late Devonian mass extinction // Geology. 2002. 30(8). P. 711—714.
  • Kempe U. & Götze J. Cathodoluminescence (CL) behavior and crystal chemistry of apatite from rare-metal deposits // Mineral Magazine. 2002. 66. P. 135—156.
  • Kürschner W., Becker R. T., Buhl D., Veizer J. Strontium isotopes in conodonts: Devonian–Carboniferous transition, the northern Rhenish Slate Mountains, Germany // Ann. Soc. géol. Belg. 1992. 115 (2). P. 595—621.
  • Luz, B., Kolodny, Y., Kovach, J. Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts // Earth and Planetary Science Letters. 1984. 69. P. 255—262.
  • Richter D. K., Gotte T., Gotze J., & Neuser R. D. Progress in application of cathodoluminescence (CL) in sedimentary petrology // Mineralogy and Petrology. 2003. 79(3—4). P. 127—166. DOI: 10.1007/s00710-003-0237-4
  • Roman-Lopez J., Correcher V., Garcia-Guinea J., Rivera T., Lozano I. B. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014. 120. P. 610—615, DOI: 10.1016/j.saa.2013.10.027
  • Schneider C. A., Rasband W. S., & Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis // Nature Methods. 2012. 9(7). P. 671—675. DOI: 10.1038/nmeth.2089
  • Ségalen L., de Rafelis M., Lee-Thorp J. A., Maurer A.-F., Renard M. Cathodoluminescence tools provide clues to depositional history in Miocene and Pliocene mammalian teeth // Palaeogeography, Palaeoclimatology, Palaeoecology. 2008. 266. P. 246—253.
  • Trotter J. A., Korsch M. J., Nicoll R. S., Whitford D. J. Sr isotopic variation in single conodont elements: implications for defining the Sr seawater curve. In: Sepagli E. (Ed), Seventh European Conodont Symposium. Studies on Conodonts // Bolletino Della Societa Paleontologica Italiana. 1999. P. 507—514
  • Trotter J. A. & Eggins S. M. Chemical systematics of conodont apatite determined by laser ablation ICPMS // Chemical Geology. 2006. 233. P. 196—216. DOI: 10.1016/j.chemgeo.2006.03.004
  • Ulian G., Moro D., Valdrè G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective // Biomolecules. 2021. 11(5). 728. DOI: 10.3390/biom11050728
  • Wierzbowski H. Advances and Challengesin Palaeoenvironmental Studies Based on Oxygen Isotope Composition of Skeletal Carbonates and Phosphates // Geosciences. 2021. 11. 419. DOI: 10.3390/geosciences11100419
  • Wierzbowski H., Szaniawski H., & Błażejowski B. Structural, chemical and isotope evidence for secondary phosphate mineralization of grasping spines of Early Palaeozoic chaetognaths // Lethaia. 2021. 54. P. 245—259. DOI: 10.1111/let.12400
  • Zhuravlev A. V. Trophic position of some Late Devonian-Carboniferous (Mississippian) conodonts revealed on carbon organic matter isotope signatures: a case study of the East European basin // Geodiversitas. 2020. 42(24). P. 443—453. DOI: 10.5252/geodiversitas2020v42a24
  • Zhuravlev A. V. Carbon isotope study of conodont elements: applications and limitations // Marine Micropaleontology.2023. 178. 102200 DOI: 10.1016/j.marmicro.2022.102200
  • Zhuravlev A. V. & Shevchuk S. S. Strontium distribution in Upper Devonian conodont elements: a palaeobiological proxy // Rivista Italiana di Paleontologia e Stratigrafia. 2017. 123(2). P. 203—210. DOI: 10.13130/2039-4942/8311
  • Zhuravlev A. V., Plotitsyn A. N. & Gruzdev D. A. Carbon Isotope Ratios in the Apatite-Protein Composites of Conodont Elements — Palaeobiological Proxy. In: Frank-Kamenetskaya O. V., Vlasov D. Y., Panova E. G., Lessovaia S. N. (eds), Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature. Springer, Cham: 2020. P. 749—764. DOI: 10.1007/978-3-030-21614-6_40
Еще
Статья научная