Changes in osmolites contents, lipid peroxidation and photosynthetic pigment of Aeluropus lagopoides under potassium deficiency and salinity

Автор: Alikhani Fatemeh, Saboora Azra, Razavi Khadija

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.7, 2011 года.

Бесплатный доступ

Potassium, the most abundant cation in plant cells, is responsible for numerous physiological functions. In saline environment, similarity of Na+ and K+ causes an unbalance in K+ uptake and disorder in the its functions. In the present research, changes of four biochemical parameters (proline, glycinebetaine, photosynthetic pigments and malondialdehyde) have been investigated in Aeluropus lagopoides seedling under salinity and potassium deficiency. Sterile seeds had been cultured on modified Murashige-Skoog containing 0, 1.75 or 100 mM potassium, with or without 600 mM NaCl for 30 days. The results showed that maximum proline content was observed in root and shoot by 600 mM NaCl + 1.75 mM K+ treatment. Also in this treatment, amount of carotenoids and chlorophyll a was more decreased. Potassium deficiency caused to reduced MDA and chlorophyll b content. The highest amount of glycinebetaine was measured in the presence of 600 mM NaCl in the company of 100 mM K+. It can conclude that chlorophyll oxidation was occurred in K+ deficiency because of increasing lipid peroxidation and disruption of protein-pigment complexes. The accumulation rates of two osmolite in different organ was shown that in A. lagopoides proline and glycinebetaine play more important role in osmotic adjustment of the shoot and root, respectively.

Еще

Aeluropus lagopoides, proline, glycinebetaine, mda, potassium deficiency, salinity

Короткий адрес: https://sciup.org/14323523

IDR: 14323523

Список литературы Changes in osmolites contents, lipid peroxidation and photosynthetic pigment of Aeluropus lagopoides under potassium deficiency and salinity

  • Allakhverdiev S.I., Nishiyama Y., Suzuki I., Sakamoto Y.A., and Murata N., (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci., 96: 5862-5867.
  • Amtmann A., Armengaud P., Volkov V., (2004). Potassium nutrition and salt stress. In: Blatt, M.R. (Ed), Membrance transport in plants. Blackwell, Oxford, 293-339.
  • Ashraf M. and Harris P.J.C., (2004). Potential biochemical indicators of salt tolerance in plants. Plant Sci. 166: 3-16.
  • Aziz A. and Larher F., (1998). Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brasica napus L. J Plant Physiol 153: 754-762
  • Bates L.S., (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
  • Bol R., J. Moering J., Kuzyakov Y. and Amelung W. (2003). Quantification of priming and CO2 respiration sources following slurry-C incorporation into grassland soils with different C content. Rapid Communications in Mass Spectrometry 17: 2585-2590.
  • Chinnusamy V., Jagendorf A. and Zhu J.K. (2005). Understanding and Improving Salt Tolerance in Plants. Crop Sci., 45: 437-448.
  • Cramer G.R., Lauchli A., and Polito V.S., (1985). Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79: 207-211.
  • Cuin T.A. and Shabala S., (2005). Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol. 46: 1924-1933.
  • Cuin T.A. and Shabala S., (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ. 30: 875-885.
  • Cuin T.A. and Shabala S. (2008). Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stressinduced reactive oxygen species. Plant Signal Behav. 3: 207-208
  • Delauney A.J., Verma D.P.S., (1993). Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223.
  • Demmig-Adams B., Gilmore A., and Adams W.W., (1996). In vivo functions of carotenoids in higher plants. FASEB Journal 10: 403-412.
  • Esfandiari E., Shekari F., Shekari F. and Esfandiari M., (2007). The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the Wheat seedling. Not. Bot. Hort. Agrobot. Cluj. 35 (1): 48-55.
  • Grieve C.M. and Grattan S.R., (1983). Rapid assay for determination of water-soluble quaternary ammonium-compounds. Plant Soil 70: 303-30.
  • Heath R.L. and Packer L., (1968). Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys.,. 125: 189.
  • Hsu S.Y., Hsu Y.T., and Kao C.H., (2003). The effect of polyethylene glycol on proline accumulation in rice leaves. Bil. Plant, 46: 73-78.
  • Jannesar M., Saboora A., and Razavi K. (2009). Effects of ABA and Ca on the changes of some biochemical compounds during adaptation to salinity in Aeluropus lagopoides Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 17(1): 15-28.
  • Kitahata N., Han S.Y., Noji N., Saito T., Kobayashi M., Nakano T., (2006). A 9-cisepoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg. Med. Chem. 14: 5555-556
  • Kochian L.V., and Luccas W.J., (1988). Potassium transport in roots. Adv. Bot. Res., 15: 93-178
  • Laster G., and Stein E, (1993). Plasma membrane physiochemical changes during maturation and pastharvest strorage of muskmelon fruit. J.Am.Soc.Hort.Sci. 118: 223-227.
  • Lee T.M., and Liu C.H., (1999). Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater, J. Exp. Bot. 50: 1855-1862.
  • Leigh R.A., and Jones R.G.W. (1984). A hypothesis relating critical Potassium concentrations for growth to the distribution and functions of this ion in the plant-cell. New phytol., 97: 1-13.
  • Liang Y.C., Chen Q., Liu Q., Zhang W. and Ding R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduced lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol. 160: 1157-11
  • Liang Y.C. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant. Soil. 209: 217-224.
  • Lichtenthaler H.K. and Wellburn A.R., (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans., 11: 591-592.
  • Lobato A.K.S., Santos F.B.G., Costa R.C.L., Oliveira, N.C.F., Meirelles A.C.S., Cruz F.J.R., Alves G.A.R., Neves H.K.B., Pita J.D., Lopes M.J.S., Freitas J.M.N., (2009). Plant Soil Environ., 55(2): 58-61
  • Luna C, Luca M.D. and Taleisnik E. (2002). Physiological causes for decreased productivity under high salinity in bom tetraploid Chloris gayana cultivar. II. Oxidative stress. Aust J Agric Res,. 53(6): 669-674.
  • Maathuis F.J.M. and Amtmann A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot., 84: 123-133.
  • Maathuis F.J.M. and Sanders D. (1996). Mechanisms of potassium absorption by higher plant roots. Physiol. Plant, 96: 158-168.
  • Mohsenzadeh S., Malboobi M.A., Razavi K. and Farrahi-Aschtiani S. (2006). Physiological and molecular responses of Aeluropus Lagopoides (Poacae) to water deficit. Environ. Experiment. Bot., 56: 314-322.
  • Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bioassys with tobacco tissue culture. Physiol. Plant 15 437-493.
  • Murta T.H.H., and Murata N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science.13 (9) 499-505.
  • Pier P.A. and Benkowitz G.A., (1987). Modulation of water-stress effects on photosynthesis by altered leaf. Plant Physiol., 85: 655-61.
  • Pogson B.J., and Rissler R (2000). Genetic manipulation of carotenoid biosynthesis and photoprotection. Phil Trans R. Soc. B: Biol. Sci. 355: 1395-1403.
  • Poormohammad Kiani S., Maury P., Sarrafi A., and Grieu P (2008). QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well watered and water-stressed conditions. Plant science, 175, 565-573.
  • Rout N.P. and Shaw B.P. (1998). Salt tolerance in aquatic macrophytes: probable role of proline, the enzymes involved in its synthesis and C4 type of metabolism. Plant Sci. 136: 121-130.
  • Shalata A. and Tal M. (1998). The effect of salt stress on lipid peroxidatiopn and antioxidants in the cultivated tomato and its wild salttolerant relative Lycopersicon pennellii. Physiol Plant 104: 169-174
  • Smirnoff N., and Cubes Q.J. (1989). Hydroxyl radical scavengering activity of compatible solutes. Phytochemistry, 28: 1057-1060.
  • Solomon A., Beer S., Waisel Y., Jones G.P., and Paleg L.G. (1994) Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordains in the presence and absence proline-related compatible solutes. Physiol Plant 90: 198-204.
  • Subarro G.V., Wheeler R.M., Levine L.H., and Stutte G.W., (.2001) Glycinebetaine accumulation, ionic and water relation of red-beet at contrasting levels of sodium supply. Plant Physiol. 15: 767-776.
  • Tardy F. and Havaux M. (1996) Photosynthesis, chlorophyll fluorescence, light harvesting system and photoinhibition resistance of a zeaxanthin -accumulation mutant of Arabidopsis thaliana. Journal of photochemistry and photobiology B: Biolgy. 34, 87-94
  • Tester M., and Davenport R.J. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot., 9l: 503-527
  • Tiburcio A.F., Besford R.T., Capell T., Borell A., Testillano P.S. and Risueno M.C. (1994). Mechanism of polyamine action during senescence responses induced by osmotic stress. J. Exp. Bot. 45: 1789-1800.
  • Van Rensburg L. Kr ger ȕ G.H.J., Krȕger H. (1993). Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L., J. Plant Physiol., 141, 188-194.
  • Very A.A., and Sentenace H., (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol., 54: 575-603.
  • Wang B., Luttge U. and Ratajczak R. (2004). Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte suoada salsa L. J. plant physiol. 161: 285-293.
  • Weckx J, Vangronsveld J and Clijsters H (1993). Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of the responses. In: PechJC, LatchйA, BalaguйC (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene. Kluwer Academic Publishers, Dordrecht, pp 238-239.
  • Wei Y., Guangmin X., Daying Z. and Huimin, C., (2001). Transfer of salt tolerance from Aeluropus littoralis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci., 161: 259-266.
  • Zhao D. L., Oosterhuis D. M., and Bednarz C. W. (2001): Influences of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosyntetica 39, 103-199.
  • Yesck W.D. 1984. K-Na exchange at cellular membranes, inter cellular compartmentation of cations, and salt tolerance. In: Staples, R.C. and Tonniessen, G.H., (eds). Salinity tolerance in plants. NewYork, pp: 37-66.
  • Yildirim E.; Turan M.; and Guvenc I., (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition, 31: 593-612.
Еще
Статья научная