Changes of respiration activities in cells of winter wheat and sugar cane suspension cultures during programmed cell death process

Автор: Lyubushkina I.V., Fedyaeva A.V., Stepanov A.V., Pobezhimova T.P.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.11, 2015 года.

Бесплатный доступ

Process of cell death in suspension cultures of winter wheat and sugar cane under high (50 °С) and negative (-8 °С) temperature treatment has been studied. It has been shown, that programmed cell death (PCD) process caused by the negative temperature in the culture of winter wheat was noted for slow rate of realization and it was carried out for 10 days. It has been state that rate of cell respiration was significantly higher than in the control culture. At the same time PCD processes induced by the high temperature in the culture of sugar cane and winter wheat and by the negative temperature in the culture of sugar cane realized for 24-48 h and was accompanied by graduate decrease of respiration activities. We can conclude that the main reason of PCD processes realization differences was a different level of respiration metabolism resistance to high and negative temperatures action.

Еще

Короткий адрес: https://sciup.org/14323929

IDR: 14323929

Список литературы Changes of respiration activities in cells of winter wheat and sugar cane suspension cultures during programmed cell death process

  • Amor, Y., Chevion, M., Levine, A. (2000) Anoxia pretreatment protects soybean cells against H2O2-induced cell death: possible involvement of peroxidases and of alternative oxidase. FEBS Lett., 477, 175-180
  • Bras, M. (2005) Programmed cell death via mitochondria: different modes of dying. Biochem., 70, 231-239
  • Diamond, M., McCabe, P.F. (2007) The mitochondrion and plant programmed cell death. Plant mitochondria, 308-334
  • Dorey, S., Kopp, M., Geoffroy, P., Fritig, B., Kauffmann, S. (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol., 121, 163-172
  • Dorofeev, N.V., Peshkova, A.A., Voinikov, V.K. (2003) Ozimaia pshenitsa v Irkutskoi oblasti. Irkutsk: Art-Press, 175 p
  • Doyle, S.M., McCabe, P.F. (2010) Type and cellular location of reactive oxygen species determine activation or suppression of programmed cell death in Arabidopsis suspension cultures. Plant Sign.Behav., 5, 467-468
  • Glantz, S.A. (1998) Primer of biostatistics. McGraw-Hill, New-York
  • Grabelnych, O.I., Borovik, O.A., Tauson E.L., Pobezhimova, T. P., Katyshev, A.I., Pavlovskaya, N.S., Koroleva, N.A., Lyubushkina, I.V., Bashmakov, V.Yu., Popov, V.N., Borovskii, G.B., Voinikov, V.K. (2014) Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry (Moscow), 79, 506-519
  • Groover, A., DeWitt, N., Heidel, A., Jones, A. (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma, 196, 197-211
  • Ishikawa, H.A. (1996) Ultrastructural features of chilling injury: injured cells and early events during chilling of suspension-cultured mung bean cells. Amer. J. Bot., 83, 825-835
  • Jabs, T. (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol., 57, 231-245
  • Jones, A.M. (2001) Programmed cell death in development and defense. Plant Physiol., 125, 94-97
  • Kim, M., Lim, J.-H., Ahn, C.S., Park, K., Kim, G.T., Kim, W.T., Pai, H.-S. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18, 2341-2355
  • Kingston-Smith, A.H., Davies, T.E., Edwards, J.E., Theodorou, M.K. (2008) J.Exp.Bot., 59, 521-532
  • Klimov, S.V. (1998) Povyshennoie otnoshenie fotosintez/dyhanie pri nizkih temperaturah -vazhnoie uslovie holodovogo zakalivaniia ozimoi pshenitsy Fiziologiia rastenii, 45, 419-424
  • Koukalová, B., Kovařík, A., Fajkus, J., Široký, J. (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett., 414, 289-292
  • Krishnamurthy, K.V., Krishnaraj, R., Chozhavendan, R., Christopher, F.S. (2000) The programme of cell death in plants and animals - a comparison. Curr. Sci., 79, 1169-1181
  • Lan, S.-Y., Zhong, F.-X., Yang, Z.-M., Jin, D.-M., Xu, Z.-X. (2004) The starchy endosperm denucleation by a process of programmed cell death during rice grain development. J. Acta Biologiae Exp. Sin., 37, 34-44
  • Logan, D.C. (2008) Having a swell time - mitochondrial morphology and plant cell death programmes. J. of Microscopy, 231, 215-224
  • Lyubushkina, I.V., Grabelnych, O.I., Pobezhimova, T.P., Stepanov, A.V., Fedyaeva, A.V., Fedoseeva, I.V., Voinikov, V.K. (2014) Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death. Protoplasma, 251, 615-623
  • Murashige, T., Scoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473-497
  • Petit, P.X., Susin, S.-A., Zamzami, N., Mignotte, B., Kroemer, G. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett, 396, 7-13
  • Reape, T.J., Molony, E.M., McCabe, P.F. (2008) Programmed cell death in plants: distinguishing between different modes. J. Exp. Bot., 59, 435-444
  • Rogers, H.J. (2005) Cell death and organ development in plants. Curr. Top. Dev. Biol., 71, 225-261
  • Siedow, J.N., Umbach, A.L. (2000) The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochem. Biophys. Acta., 1459, 432-439
  • Vacca, R.A., Valenti, D., Bobba, A., Merafina, R.S., Passarella, S., Marra, E. (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol., 141, 208-219
  • Williams, B., Dickman, M. (2008) Plant programmed cell death: can't live with it; can't live without it. Mol. Plant Pathol., 9, 531-544
  • Wu, J., Lightner, J., Warwick, N., Browse, J. Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2 °C. Plant Physiol., 113, 347-356
  • Yao, N., Eisfelder, B.J., Marvin, J., Greenberg J.T. (2004) The mitochondrion - an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J., 40, 596-610
  • Yu, I.C., Parker, J., Bent, A.F. (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA, 95, 7819-7824
  • Zauralov, O.A., Lukatkin, A.S. (1997) Posledeistvie ponizhennyh temperatur na dyhanie teploliubivyh rastenii. Physiologia rastenii, 44, 736-741
  • Zhou, Z., Wang, L., Li, J., Song, X., Yang, C. (2009) Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. Protoplasma, 236, 49-58
Еще
Статья научная