Characterization of the biochemical composition and antioxidant activity of Spinacia oleracea L. and Spinacia turkestanica Iljin.: a comparative study

Автор: Sokolova D.V., Solovieva A.E.

Журнал: Овощи России @vegetables

Рубрика: Селекция, семеноводство и биотехнология растений

Статья в выпуске: 4 (72), 2023 года.

Бесплатный доступ

Spinach is an economically important vegetable crop widely cultivated and consumed worldwide. This early ripening leafy vegetable is rich in bioactive components, fiber, micro and macro elements, vitamins, and has high antioxidant activity. Results of numerous studies on the effects of spinach on human health confirm its beneficial effect. The species S. oleracea L. is cultivated commercially. The ancestor of cultivated spinach is S. turkestanica Iljin, which has a breeding potential for different economically valuable traits. Its biochemical composition has been studied extremely little. The present article offers a comparative evaluation of the biochemical profile and antioxidant activity of cultivated and wild spinach species. The material for the study was a representative sample of 48 collection accessions of spinach from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR). The accessions were grown in 2019 and 2020 in the open ground of the Pushkin and Pavlovsk Laboratories of VIR. The antioxidant activity was studied spectrophotometrically by the DPPH assay of free radical scavenging at a wavelength of 515 nm. A significant similarity of the two species in most biochemical parameters was revealed, which confirms their phylogenetic relationship. Significant differences were found in the content of phenolic elements, which determine the elevated values of antioxidant and antiradical activity of S. turkestanica. The article presents correlation matrices of species biochemical composition, describes general trends, negative relationships and conjugated factors. The identified promising accessions of both cultivated and wild spinach are recommended for breeding for increased content of phenolic compounds, ascorbic acid and antioxidant activity. The result of the study helps to reveal the potential of the crop as a valuable source of bioactive components and high antioxidant activity.

Еще

Spinach, spinacia oleracea l, spinacia turkestanica iljin, antioxidant activity, phenolic compounds

Короткий адрес: https://sciup.org/140301891

IDR: 140301891   |   DOI: 10.18619/2072-9146-2023-4-23-29

Список литературы Characterization of the biochemical composition and antioxidant activity of Spinacia oleracea L. and Spinacia turkestanica Iljin.: a comparative study

  • Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2021. Available online: www.fao.org/faostat/en/#data/QCL (date of access 13 января 2023 года).
  • Mukhanova Yu.I., Trebukhina K.A. Expand assortment. Potato and vegetables. 1987;(1):23-25. (in Russian)
  • Pivovarov V.F. Vegetables of Russia. Moscow: Russian seeds. 1994. (in Russian)
  • Hu J., Wu F., Wu S., Cao Z., Lin X., Wong M. H. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere. 2013;91(4):455-461. https://doi.org/10.1016/j.chemosphere.2012.11.066
  • Morelock T.E., Correll J.C. Spinach. In: Prohens J., Nuez F. (eds.) Vegetables I. Handbook of plant breeding. Vol 1. Springer, New York. 2008.
  • Tang L., Hamid Y., Sahito Z. A., Gurajala H. K., He Z., Feng Y., Yang X. Evaluation of variation in essential nutrients and hazardous materials in spinach (Spinacia oleracea L.) genotypes grown on contaminated soil for human consumption. Journal of Food Composition and Analysis. 2019;(79):95-106. https://doi.org/10.1016/j.jfca.2019.03.012
  • Manzoor M. F., Ahmed Z., Ahmad N., Aadil R. M., Rahaman A., Roobab U., … Siddeeg A. Novel processing techniques and spinach juice: Quality and safety improvements. Journal of Food Science. 2020;85(4):1018-1026. https://doi.org/10.1111/1750-3841.15107
  • Longnecker M.P., Newcomb P.A., Mittendorf R., Greenberg E.R., Willett W.C. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev.1997;6(11):887-892.
  • Lomnitski L., Bergman M., Nyska A., Ben-Shaul V., Grossman S. Composition, Efficacy, and Safety of Spinach Extracts. Nutrition and Cancer. 2003;46(2):222-231. https://doi.org/10.1207/s15327914nc4602_16
  • Edenharder R., Keller G., Platt K.L., Unger K.K. Isolation and Characterization of Structurally Novel Antimutagenic Flavonoids from Spinach (Spinacia oleracea). Journal of Agricultural and Food Chemistry. 2001;49(6):2767-2773. https://doi.org/10.1021/jf0013712
  • Kotake-Nara E., Kushiro M., Zhang H., Sugawara T., Miyashita K., Nagao A. Carotenoids Affect Proliferation of Human Prostate Cancer Cells. The Journal of Nutrition. 2001; 131(12):3303-3306. https://doi.org/10.1093/jn/131.12.3303
  • Nyska A., Suttie A., Bakshi S., Lomnitski L., Grossman S., Bergman M., … Maronpot R.R. Slowing Tumorigenic Progression in TRAMP Mice and Prostatic Carcinoma Cell Lines Using Natural Anti-Oxidant from Spinach, NAO-A Comparative Study of Three Anti-Oxidants. Toxicologic Pathology. 2003;31(1):39-51. https://doi.org/10.1080/01926230390173833
  • Maeda N., Matsubara K., Yoshida H., Mizushina Y. Anti-cancer Effect of Spinach Glycoglycerolipids as Angiogenesis Inhibitors Based on the Selective Inhibition of DNA Polymerase Activity. Mini-Reviews in Medicinal Chemistry. 2011;11(1):32-38. https://doi.org/10.2174/138955711793564042
  • An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. 2003;141(4):399-436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x
  • Steven C.C. Decas plantarum nondum descriptarum Iberiae et Rossiae meridionalis (Mmoires de la socit Impriale des naturalistes de Moscou, 1809, V. II, p. 173-183) (in Latine)
  • Ilyin M.M. Family III. Chenopodia - Chenopodiaceae Less. Flora URSS : in 30 volumes / editor-in-chief V. L. Komarov. - M.; L. Publishing House of the Academy of Sciences of the USSR. 1936. V.6. (ed. B. K. Shishkin) (in Russian)
  • Uotila P. Spinacia. In: Reichinger K.H. (ed). Flora Iranica. Akademische Druck und Verlagsanstalt, Graz. 1997.
  • Andersen S.B., Torp A.M. Spinacia. Chapter 13. In: Kole C. (ed.) Wild crop relatives: genomic and breeding resources vegetables. Springer, Berlin, 2011.
  • Hallavant C., Ruas M.P. The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th-mid 13th century A.D. France. Vegetation History and Archaeobotany. 2014;23:153-165. https://doi.org/10.1007/s00334-013-0400-8
  • Dekandol' A. Place of origin of cultivated plants: Translation from the 2nd fr. ed. with add. according to later sources. Dr. Chr. Gobi, prof. St. Petersburg. university (ed.). St. Petersburg: K. Ricker, 1885. (in Russian)
  • Xu C., Jiao C., Zheng Y., Sun H., Liu W., Cai X., … Wang Q. De novo and comparative transcriptome analysis of cultivated and wild spinach. Scientific Reports. 2015;(5):1-9. https://doi.org/10.1038/srep17706
  • Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., Zheng Y., Liu W., Sun X., Xu Y., Deng J., Zhang Z., Huang S., Dai S., Mou B., Wang Q., Fei Z., Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 2017;(8):15275. https://doi.org/10.1038/ncomms15275
  • Ermakov A.I. Biochemical research methods of plants. Leningrad, 1987. (In Russian)
  • Kjeldahl J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. [New Method for the Determination of Nitrogen in Organic Substances.] Zeitschrift für analytische Chemie. 1883;(22):366-383. https://doi.org/10.1007/BF01338151
  • Ainsworth E.A., Gillespie K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols. 2007;2(4):875-877. https://doi.org/10.1038/nprot.2007.102
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25-30. https://doi.org/10.1016/s0023-6438(95)80008-5
  • Girenko M.M. Initial material for breeding of leafy green crops in the northwestern zone of the USSR (spinach, lettuce, dill) [dissertation]. Leningrad; 1964. (in Russian)
  • Sychova I.V. Peculiarities of ecological methods for assessing the source material for the creation of heterotic spinach hybrids [dissertation]. Moscow; 2000. (in Russian)
  • Koh E., Charoenprasert S., Mitchell A. E. Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.). Journal of Agricultural and Food Chemistry. 2012;60(12):3144-3150. https://doi.org/10.1021/jf300051f
  • Bergquist S.Å.M., Gertsson U.E., Nordmark L.Y.G., Olsson M.E. Ascorbic Acid, Carotenoids, and Visual Quality of Baby Spinach as Affected by Shade Netting and Postharvest Storage. Journal of Agricultural and Food Chemistry. 2007;55(21):8444-8451. https://doi.org/10.1021/jf070396z
  • Mozafar A. Plant Vitamins Agronomic, Physiological, and Nutritional Aspects. CRC Press: Boca Raton (1st edition). 1993. https://doi.org/10.1201/9781351075800
  • Proietti S., Moscatello S., Colla G., Battistelli Y. The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves. The Journal of Horticultural Science and Biotechnology. 2004;79(4):606-609. https://doi.org/10.1080/14620316.2004.11511814
  • Walker R. Nitrates, nitrites and N-nitrosocompounds: A review of the occurrence in food and diet and the toxicological implications. Food Additives and Contaminants. 1990;7(6):717-768. https://doi.org/10.1080/02652039009373938
  • Zaprometov M.N. Phenolic compounds. Distribution, metabolism and functions in plants. Moscow. 1993. (in Russian)
  • Cao G., Sofic E., Prior R.L. Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radical Biology and Medicine. 1997;22(5):749-760. https://doi.org/10.1016/s0891-5849(96)00351-6
  • Deng G.-F., Lin X., Xu X.-R., Gao L.-L., Xie J.-F., Li H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods. 2013;5(1):260-266. https://doi.org/10.1016/j.jff.2012.10.015
  • Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Stampar F., Veberic R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. Journal of the Science of Food and Agriculture. 2014;95(4):776-785. https://doi.org/10.1002/jsfa.6897
  • Åkerstrom A., Jaakola L., Bång U., Ja ̈ derlund A. Effects of Latitude-Related ̈ Factors and Geographical Origin on Anthocyanidin Concentrations in Fruits of Vaccinium myrtillus L. (Bilberries). Journal of Agricultural and Food Chemistry. 2010;58(22):11939-11945. https://doi.org/10.1021/jf102407n
  • Latti A K., Jaakola L., Riihinen K.R., Kainulainen P.S. Anthocyanin and ̈ Flavonol Variation in Bog Bilberries (Vaccinium uliginosum L.) in Finland. Journal of Agricultural and Food Chemistry. 2010;58(1):427-433. https://doi.org/10.1021/jf903033m
  • Lomnitski L., Carbonatto M., Ben-Shaul V., Peano S., Conz A., Corradin L., … Nyska A. The Prophylactic Effects of Natural Water-Soluble Antioxidant from Spinach and Apocynin in a Rabbit Model of Lipopolysaccharide-Induced Endotoxemia. Toxicologic Pathology. 2000;28(4):588-600. https://doi.org/10.1177/019262330002800413
  • Kanner J., Frankel E., Granit R., German B., Kinsella J. E. Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry. 1994;42(1):64-69. https://doi.org/10.1021/jf00037a010
  • Salah N., Miller N.J., Paganga G., Tijburg L., Bolwell G.P., Riceevans C. Polyphenolic Flavanols as Scavengers of Aqueous Phase Radicals and as Chain-Breaking Antioxidants. Archives of Biochemistry and Biophysics. 1995;322(2):339-346. https://doi.org/10.1006/abbi.1995.1473
  • Bergman M., Varshavsky L., Gottlieb H.E., Grossman S. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry. 2001;58(1):143-152. https://doi.org/10.1016/s0031-9422(01)00137-6
  • Chu Y.-F., Sun J., Wu X., Liu, R.H. Antioxidant and Antiproliferative Activities of Common Vegetables. Journal of Agricultural and Food Chemistry. 2002;50(23):6910-6916. https://doi.org/10.1021/jf020665f
  • Wang H., Cao G., Prior R.L. Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry. 1996;44(3):701-705. https://doi.org/10.1021/jf950579y
  • Prior R.L., Cao G., Martin A., Sofic E., McEwen J., O’Brien C., … Mainland C.M. Antioxidant Capacity As Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. Journal of Agricultural and Food Chemistry. 1998;46(7):2686-2693. https://doi.org/10.1021/jf980145d
  • Gil M.I., Ferreres F., Tomás-Barberán F.A. Effect of Postharvest Storage and Processing on the Antioxidant Constituents (Flavonoids and Vitamin C) of Fresh-Cut Spinach. Journal of Agricultural and Food Chemistry. 1999;47(6):2213-2217. https://doi.org/10.1021/jf981200l
Еще
Статья научная