Numerical approximation of convective boundary conditions for grids with mobile nodes
Автор: Panferov S.V., Panferov V.I.
Журнал: Вестник Южно-Уральского государственного университета. Серия: Энергетика @vestnik-susu-power
Рубрика: Теплоэнергетика
Статья в выпуске: 4 т.15, 2015 года.
Бесплатный доступ
Usually, to solve the equation of heat conduction in the areas with variable time boundaries are used in the method of catching a boundary node spatial grid, which necessitates the use in the calculations of the step of alternating in time, moreover, be variable, and the number of spatial nodes. However, in many cases, may be more preferable method meshes with mobile nodes, in this case there is no need to change the number of spatial nodes and a time step. In this paper, for meshes with mobile nodes consider the problem of approximating the convective boundary condition. Direct replacement of derivatives in the boundary condition by finite differences leads to large error calculating surface temperature and, therefore, the whole temperature field of the body. When using a grid with a constant pitch in space in order to increase the accuracy of calculations for finite-difference replace the boundary condition formula can be used Beck. In the literature for meshes with mobile nodes formulas similar to Beck, is not, so there is the problem of determining such a formula. To solve the problem of approximation of the method of heat balance of the unit cell in the body surface. Performed testing of the resulting finite-difference formulas, including using a computational experiment. The results obtained can be used in the construction scheme for computing with mobile nodes.
Finite-difference scheme, convective boundary condition, the grid method with mobile nodes, computational domain with moving boundaries, temperature field approximation
Короткий адрес: https://sciup.org/147158322
IDR: 147158322 | DOI: 10.14529/power150402