Численная модель течения в выхлопном узле «отверстие - колено»

Автор: Кареева Ю.Р., Чухлова М.Б., Зиганшин А.М., Логачев К.И., Тусупова К.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является узел системы вентиляции «вытяжное отверстие - колено». Системы вентиляции, проектируемые в зданиях различного назначения, как правило, сильно разветвлены, что приводит к значительным потерям давления, наибольшие из которых обусловлены местными сопротивлениями в элементах воздуховодной арматуры. Конструктивные особенности помещений и значительные габариты вентиляционных каналов приводят к необходимости прокладки воздуховодов с рядом установленными элементами воздуховодной арматуры. В таких случаях один элемент оказывает взаимное влияние на другой, при этом изменяются по сравнению с отдельными как коэффициенты местных сопротивлений, так и общие потери давления, что в настоящее время не учитывается при выполнении аэродинамических расчетов.

Еще

Система вентиляции, элементы воздуховодов, блок

Короткий адрес: https://sciup.org/143182719

IDR: 143182719   |   DOI: 10.4123/CUBS.109.26

Список литературы Численная модель течения в выхлопном узле «отверстие - колено»

  • Gao, R., Fang, Z., Li, A., Liu, K., Yang, Z. and Cong, B. (2017) Numerical Simulation and Experimental Study of the Drag Reduction of 90° Elbows for Ventilation and Air Conditioning Tubes in An Arc Form. Procedia Engineering. https://doi.org/10.1016/j.proeng.2017.09.859.
  • Idelchik, I.E. (1992) Handbook of Hydraulic Resistance. 3rd Edition Revised and Enlarged. Moscow. https://www.nrc.gov/docs/ML1220/ML12209A041.pdf
  • Broyda, V.A., Dorofeenko, N.S. and Sharafeeva, A.R. (2020) Numerical Study of the Fields of Air Velocity and Temperature in a Residential Building, Taking into Account the Influence of the Natural Influx. News KSUAE, 2(52), 89–97. https://izvestija.kgasu.ru/ru/nomera-zhernala/arkhiv-zhurnala?sod=sod2_2020&idizv=16
  • Kazakov, B.P., Kolesov, E. V., Nakariakov, E. V. and Isaevich, A.G. (2021) Models and Methods of Aerogasdynamic Calculations for Ventilation Networks in Underground Mines: Review. Mining Informational and Analytical Bulletin. https://doi.org/10.25018/0236_1493_2021_6_0_5.
  • Tawackolian, K. and Kriegel, M. (2022) Turbulence Model Performance for Ventilation Components Pressure Losses. Building Simulation, 15. https://doi.org/10.1007/s12273-021-0803-x.
  • Yuce, B.E., Aganovic, A., Nielsen, P.V. and Wargocki, P. (2023) Analysis of Parameters Influencing Pathogen Concentration in a Room with Displacement Ventilation Using Computational Fluid Dynamics and Taguchi Methods. Journal of Building Engineering, 80, 108002. https://doi.org/10.1016/j.jobe.2023.108002.
  • Malanichev, I. and Akhmadiev, F. (2020) Pressure Loss Reduction in Ventilation Ducts by Shape Optimization of the Removable Profiled Components. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/890/1/012154.
  • Gajbhiye B., Chaturvedi A., Sawant Sh., Gosavi S., Kulkarni H., M.C. (2020) CFD Simulations of Flow and Pressure Drop in T-Junction. Chemcon 2015. https://www.researchgate.net/publication/344444694_CFD_SIMULATIONS_OF_FLOW_AND_PRESSURE_DROP_IN_T-JUNCTION
  • van Druenen T., Kabbara Z., Verhaert I., van Hooff, T. (2022) Simplified CFD for Pressure Drop Predictions in Ducts. CLIMA 2022 Conference. https://doi.org/10.34641/clima.2022.304.
  • Phnce, J., Tabarra, M., Alexander, J. and Peiro, J. (2015) On the Prediction of Pressure Losses in Complex Flow Scenarios Using CFD. BHR Group - 16th International Symposium on Aerodynamics, Ventilation and Fire in Tunnels 2015. https://www.researchgate.net/publication/283211707_On_the_prediction_of_pressure_losses_in_complex_flow_scenarios_using_CFD
  • Mumma, S., Mahank, T., Ke, Y. (1998) Analytical Determination of Duct Loss-Coefficients. Applied Energy, 61 (4), 229–247. https://www.sciencedirect.com/science/article/abs/pii/S0306261998000415
  • Salehi, M., Sleiti, A.K. and Idem, S. (2017) Study to Identify Computational Fluid Dynamics Models for Use in Determining HVAC Duct Fitting Loss Coefficients. Science and Technology for the Built Environment, 23, 181–191. https://doi.org/10.1080/23744731.2016.1204889.
  • Moujaes, S., Deshmukh, S. (2006) Three-Dimensional CFD Predications AndExperimental Comparison of Pressure Drop of Some Common Pipe Fittings InTurbulent Flow. Journal of Energy Engineering, 132(2), 61–66. https://www.researchgate.net/publication/245289616_Three-Dimensional_CFD_Predications_and_Experimental_Comparison_of_Pressure_Drop_of_Some_Common_Pipe_Fittings_in_Turbulent_Flow
  • Sleiti, A., Salehi, M. and Idem, S. (2017) Detailed Velocity Profiles in Close-Coupled Elbows—Measurements and Computational Fluid Dynamics Predictions (RP-1682). Science and Technology for the Built Environment, 23, 1212–1223. https://doi.org/10.1080/23744731.2017.1285176.
  • Zhang, W. and Li, A. (2018) Resistance Reduction via Guide Vane in Dividing Manifold Systems with Parallel Pipe Arrays (DMS-PPA) Based on Analysis of Energy Dissipation. Building and Environment, Elsevier Ltd, 139, 189–198. https://doi.org/10.1016/j.buildenv.2018.04.010.
  • Yin, Y., Wen, X., Zhang, J. and Li, A. (2022) Geometric Parameters Optimization of Low Resistance T-Junction with Guide Vanes in HVAC System. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202235602056.
  • Kashurkin, A. and Prokhorov, V. (2018) On the Mutual Influence of Local Resistances in the Distribution of Ventilation Air. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201825103039.
  • Dilgen, C.B., Dilgen, S.B., Fuhrman, D.R., Sigmund, O. and Lazarov, B.S. (2018) Topology Optimization of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, Elsevier B.V., 331, 363–393. https://doi.org/10.1016/j.cma.2017.11.029.
  • Courtais, A., Lesage, F., Privat, Y., Frey, P. and Latifi, A. razak. (2019) Adjoint System Method in Shape Optimization of Some Typical Fluid Flow Patterns. Computer Aided Chemical Engineering. https://doi.org/10.1016/B978-0-12-818634-3.50146-6.
  • Gao, R., Liu, K., Li, A., Fang, Z., Yang, Z. and Cong, B. (2018) Study of the Shape Optimization of a Tee Guide Vane in a Ventilation and Air-Conditioning Duct. Building and Environment, Elsevier Ltd, 132, 345–356. https://doi.org/10.1016/j.buildenv.2018.02.006.
  • Gao, R., Zhang, H., Li, A., Liu, K., Yu, S., Deng, B., Wen, S., Li, A., Zhang, H., Du, W. and Deng, B. (2018) A Novel Low-Resistance Duct Tee Emulating a River Course. Building and Environment, Elsevier, 144, 295–304. https://doi.org/10.1016/j.buildenv.2018.08.034.
  • Gao, R., Liu, K., Li, A., Fang, Z., Yang, Z. and Cong, B. (2018) Biomimetic Duct Tee for Reducing the Local Resistance of a Ventilation and Air-Conditioning System. Building and Environment, 129, 130–141. https://doi.org/10.1016/j.buildenv.2017.11.023.
  • Du, X., Wei, A., Fang, Y., Yang, Z., Wei, D., Lin, C.H. and Jin, Z. (2020) The Effect of Bend Angle on Pressure Drop and Flow Behavior in a Corrugated Duct. Acta Mechanica, 231. https://doi.org/10.1007/s00707-020-02716-5.
  • Karbon, M. and Sleiti, A.K. (2020) Large-Eddy Simulation of the Flow in Z-Shape Duct. Cogent Engineering, 7. https://doi.org/10.1080/23311916.2020.1778349.
  • Hou, Y., Song, S., Sun, J., Liu, G., Liu, J., Cui, X. and Xu, Q. (2023) Wear Regularity of Shotcrete Conveying Bend Based on CFD-DEM Simulation. Buildings, 13. https://doi.org/10.3390/buildings13020415.
  • Djebedjian, B., Mohamed, M.S. and Elsayed, A. (2008) Numerical Studies of Curvature Effect on Turbulent Flows in 180 Curved Ducts. Proceedings of IEC. https://www.researchgate.net/publication/236961217_NUMERICAL_STUDIES_OF_CURVATURE_EFFECT_ON_TURBULENT_FLOWS_IN_180_CURVED_DUCTS
  • Zamalieva, A.T., Ziganshin, M.G. (2019) Increasing the Energy and Environmental Efficiency of Gas Cleaning Systems at Thermal Power Plants. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering., 330, 143–153. https://elibrary.ru/item.asp?id=41126448
  • Logachev, K.I., Ziganshin, A.M. and Averkova, O.A. (2020) A Study of Separated Flows at Inlets of Flanged Slotted Hoods. Journal of Building Engineering, 29. https://doi.org/10.1016/j.jobe.2019.101159.
  • Solodova, E.E. (2021) Features of Flows Numerical Modeling of Z-Shaped Elbows of Ventilation and Air Conditioning Systems of Buildings and Structures. News KSUAE, 1(55), 71–84. https://doi.org/10.52409/20731523_2021_1_71.
  • Ziganshin, A.M., Belyaeva, E.E., Sokolov, V.A. (2017) Reduced Pressure Loss When Profiling Sharp and Recessed Elbows // News of Higher Educational Institutions. Construction. News of higher educational institutions. Construction, 1, 108–116. https://www.elibrary.ru/item.asp?id=29308655
Еще
Статья научная