The numerical simulation of composite sandwich cylindrical shells reinforced with circular frames under local loadings

Бесплатный доступ

The paper considers a woven fabric (based on fiberglass) composite structure in the form of a foam core sandwich cylindrical shell reinforced with circular frames, under the action of local loads applied to the frames. A technique is described for obtaining a numerical solution (with the confirmed reliability) to the problem of the stress-strain state of this type of structure using two alternative computational models, one of which is based on the numerical integration method, and the other one is based on the finite element method. The first model is developed by adopting a scheme, in which the frames are considered as short cylindrical shells obeying the single normal hypothesis. The foam core sandwich sections connected to them are considered within the framework of the zig-zag theory of soft core sandwich shells based on the assumption of incompressibility of the core along thickness. In this case, the corresponding calculation problem is formulated in the form of systems of algebraic and differential (in partial derivatives) equations for each of the shell sections being considered, which are supplemented by kinematic and force conditions at their joints, as well as boundary conditions at the left and right ends of the structure. The problem solving for each harmonic number is reduced to solving a set of boundary value problems for systems of 8 and 12 linear ordinary differential equations of the first order, related by conditions at the specified joints and using the procedure for expanding the parameters of the stress-strain state and applied loads into Fourier series in the circumferential direction. The solution algorithm is constructed using the numerical integration procedure in the orthogonal sweep version combined with the displacement method procedure (to satisfy the conditions at the joints). The declared finite element model is built within the ABAQUS software package using S4 shell elements (for composite layers) and C3D20 volume elements (for frames and core). The formed model, when setting deliberately overestimated values of the corresponding elastic modules, can implement a situation close to fulfilling the set of hypotheses adopted when constructing the first model. Having fixed in such a situation the consistency of the calculation results on the basis of the alternative computational models constructed in this way and thereby confirming the reliability of the obtained numerical solution, we carry out the transition to the calculation using the real values of the mentioned modules and the analysis of their influence on the stress-strain state of the investigated sandwich shell. The presented example of the calculation of a composite sandwich cylindrical structure, one of the frames of which is under the action of two local axial loads, demonstrates the possibilities of the adopted modeling method.

Еще

Soft core sandwich cylindrical shell with circular frames, local loadings, finite element method, numerical integration method

Короткий адрес: https://sciup.org/146282361

IDR: 146282361   |   DOI: 10.15593/perm.mech/2021.3.15

Статья научная