Численное моделирование процесса управления фазовым переходом при кручении полого цилиндра из сплава Гейслера

Бесплатный доступ

Рассматриваются ферромагнитные сплавы с эффектом памяти формы (сплавы Гейслера), испытывающие фазовый переход из высокотемпературной кубической фазы (аустенит) в низкотемпературную тетрагональную фазу (мартенсит) в ферромагнитном состоянии. В этих сплавах в процессе прямого температурного фазового перехода из аустенитного состояния в мартенситное возможны генерации значительных макроскопических деформаций за счет приложения механических напряжений. Поскольку критические температуры процесса зависят от магнитного поля и полей напряжений, в таких сплавах возможно управление процессом фазового перехода аустенит-мартенсит с помощью магнитного поля. Представлена модель, позволяющая в рамках конечных деформаций описывать процесс управления прямым (аустенит-мартенсит) и обратным (мартенсит-аустенит) фазовыми переходами с помощью магнитного поля в ферромагнитных поликристаллических материалах с памятью формы при действии внешних силовых, тепловых и магнитных полей. Поскольку магнитное поле влияет на деформацию материала, которая, в свою очередь, изменяет магнитное поле, поставлена связанная краевая задача и рассмотрен пример об азимутальном кручении длинного полого цилиндра (плоская деформация) из сплава Гейслера. Задача реализована численно методом конечных элементов с использованием процедуры пошагового нагружения. Накопление фазовых деформаций происходило в процессе прямого фазового перехода в цилиндре, внешняя поверхность которого была предварительно в аустенитном состоянии закручена в азимутальном направлении относительно фиксированной внутренней. При этом величина накопленных фазовых деформаций зависела от того, какие граничные условия (силовые или кинематические), производящие закручивание, заданы на внешней поверхности цилиндра. Полное снятие накопленных деформаций и раскручивание внешней поверхности цилиндра обратно происходило как при нагревании образца в интервале температур обратного фазового перехода в отсутствие магнитного поля, так и при постоянной температуре, превышающей этот интервал, при снятии магнитного поля, приложенного предварительно в мартенситном состоянии.

Еще

Сплавы с памятью формы, сплавы гейслера, фазовый переход, аустенит, мартенсит, магнитное поле, конечные деформации, фазовые деформации, краевая задача, вариационная постановка, метод конечных элементов

Короткий адрес: https://sciup.org/146281953

IDR: 146281953   |   DOI: 10.15593/perm.mech/2019.3.08

Список литературы Численное моделирование процесса управления фазовым переходом при кручении полого цилиндра из сплава Гейслера

  • Ферромагнетики с памятью формы / А.Н. Васильев [и др.] // Успехи физических наук. - 2003. - Т. 173, № 6. - С. 577-608. DOI: 10.3367/UFNr.0173.200306a.0577
  • Магнитные сплавы с памятью формы: фазовые переходы и функциональные свойства / В.Д. Бучельников [и др.] // Успехи физических наук. - 2006. - Т. 176, № 8. - С. 900-906. DOI: 10.3367/UFNr.0176.200608j.0900
  • Roubicek T., Stefanell U. Magnetic shape-memory alloys: thermomechanical modelling and analysis // Continuum Mechanics and Thermodynamics. - 2014. - Vol. 26. - No. 6. - P. 783-810. DOI: 10.1007/s00161-014-0339-8
  • Lagoudas D.C. Shape Memory Alloys. Modeling and Engineering Applications. - New York: Springer Science Business Media, 2008. - 455 p. DOI: 10.1007/978-0-387-47685-8
  • Haldar K., Lagoudas D.C., Karaman I. Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: Modeling and experiments // Journal of the Mechanics and Physics of Solids. - 2014. - Vol. 69. - P. 33-66. DOI: 10.1016/j.jmps.2014.04.011
Статья научная