Численный алгоритм решения задачи о больших упругопластических деформациях МКЭ
Автор: Давыдов Руслан Лаврентьевич, Султанов Ленар Усманович
Статья в выпуске: 1, 2013 года.
Бесплатный доступ
Работа посвящена методике исследования конечных упругопластических деформаций. В качестве тензоров, описывающих деформацию и скорость деформации, используются левый тензор Коши–Грина, тензор пространственного градиента скорости и тензор деформации скорости. Вводится удельная потенциальная энергия деформации, которая зависит от левого тензора Коши–Грина. Рассмотрен изотропный материал. Напряженное состояние описывается тензором истинных напряжений Коши–Эйлера, который определяется в актуальном состоянии. Получены линеаризованные определяющие соотношения упругого деформирования в виде зависимости производной Трузделла тензора напряжении Коши–Эйлера от деформации скорости. В рамках теории течения используются аддитивное представление для полной деформации скорости. Предполагается справедливость ассоциированного закона течения. Критерием упругого деформирования является условие Мизеса–Губера. Алгоритм исследования основан на методе последовательных нагружений. В качестве базового уравнения принимается уравнение мощностей в актуальном состоянии. После линеаризации получена разрешающая система линейных уравнений, где неизвестным является приращение перемещений в текущем временном слое. При моделировании пластических деформаций применяется метод проецирования напряжений на поверхность текучести с итерационным уточнением текущего напряженно-деформированного состояния, основанным на введение в разрешающие уравнение мощности дополнительных напряжений. В качестве примера рассмотрено построение алгоритма решения для материала второго порядка. Выбрано соответствующее выражение потенциала упругих деформаций, критерием пластического течения служит условие Губера–Мизеса с изотропным упрочнением. Получены линеаризированные определяющие соотношения. Численная реализация основана на методе конечных элементов. Используется восьмиузловой конечный элемент. Созданный алгоритм исследования больших упругопластических деформаций опробован на решении тестовой задачи о растяжении круглого стержня с образованием шейки. Приводятся результаты решения и сравнение с результатами, полученными другими авторами. Также исследовалось деформирование квадратной плиты под действием внутреннего давления.
Большие деформации, нелинейная упругость, пластичность, метод конечных деформаций
Короткий адрес: https://sciup.org/146211468
IDR: 146211468