Comparative evaluation of GHCIPK6 gene expression profiles under different concentrations of NaCl in cotton (Gossypium hirsutum L.) seedlings

Автор: Alizade Sh.A.

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Генетика

Статья в выпуске: 2, 2024 года.

Бесплатный доступ

Ca2+ accumulation in plants under salt stress improves signal transduction and protect them from fatal consequences. Calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBLinteracting protein kinases (CIPKs). The CIPK gene family is involved in responses to abiotic stressors such as salt, drought, high and low temperatures. In this investigation, the relative expression of GhCIPK6 was studied under stress conditions of 100 mM and 200 mM concentration of NaCl in 31 geographically distant cotton cultivars belonging to the species Gossypium hirsutum L. Different dynamics of relative expression patterns were observed in cultivars that differ in their salt tolerance. An increase in GhCIPK6 transcripts was observed in both resistant and susceptible cultivars. at the same time, a decrease in the expression level was determined in both resistant and sensitive genotypes. The obtained results showed that the GhCIPK6 is induced to different degrees by salt stress and the mechanisms that ensure the salt tolerance in plants are different.

Еще

Cotton, salt stress, calcineurin b-like protein (cbl), cbl-interacting protein kinase (cipk)

Короткий адрес: https://sciup.org/147244924

IDR: 147244924   |   DOI: 10.17072/1994-9952-2024-2-212-220

Список литературы Comparative evaluation of GHCIPK6 gene expression profiles under different concentrations of NaCl in cotton (Gossypium hirsutum L.) seedlings

  • Ализаде Шадер. Роль миРНК в ответах на солевой стресс хлопчатника // Достижения в области биологии и наук о Земле. 2022. Т. 7, № 1. С. 80-84.
  • Ализаде Ш.А. Оценка уровня экспрессии гена GhMAPK в условиях солевого стресса у сортов хлопчатника // Биотехнология и селекция растений. 2023. Т. 6, № 4. С. 1-8.
  • Akparov Z.I. et al. Competitive evaluation of perspective cotton lines in variety development nursery // Advances in Current Natural Sciences. 2021. Vol. 10. P. 7-12.
  • Alizada S. et al. System Perspective Analysis for Molecular and Genetic Source of Salt Tolerance in Cotton // Khazar Journal of Science and Technology. 2020. Vol. 4, № 1. P. 70-83.
  • Alizada Sh., Aliyeva K. Comparative analysis of expression profiles of antiporter encoding gene (GhNHX1) under different concentrations of NaCl in cotton (Gossypium hirsutum L.) // Advances in Biology & Earth Sciences. 2024. Vol. 9, № 1. P. 168-174.
  • Alizade S. Comparative study of SPAD values in cotton plant under salt stress // Proceedings of Genetic Resources Institute of ANAS. 2022. Vol. 11, № 1. P. 139-146.
  • Alizade S., Mammadova R. Assessment of salt stress resistance of cotton varieties based on different parameters // Advances in Biology & Earth Sciences. 2023a. Vol. 8, № 1. P. 58-66.
  • Alizade S., Mammadova R., Sirajli N., Evaluation of morphometric traits of upland cotton genotypes under different concentration of NaCl // Advances in Biology & Earth Sciences. 2023b. Vol. 8, № 3. P. 301-307.
  • АтаЬ M. et al. Сomрrehensive Аnаlуsis of Са1сшш Sensor Fаmi1ies, СБЬ апё С1РК, in Aeluropus littoralis md Their Exрression РтоАк in Resрonse to Sа1initу // Genes. 2023. Vol. 14. P. 1-14.
  • Bаi X. et al. Сhаrасterizаtion of СБЬ-Шета^^ Рrotein Kisses Gene Fаmi1у md Exрression Раttern Reveа1 Their Imрortаnt Roles in Resрonse to Sа1t Stress in Рoр1аr // Forests. 2022. Vol. 13. P. 1-13.
  • Basal H. Response of cotton (Gossypium hirsutum L.) genotypes to salt stress // Pak. J. Bot. 2010. Vol. 42, № 1. P. 505-511.
  • Bilkh M, Li F., Уа^ Z. Reg^to^ Network of ^tton Genes in Resрonse to Sа1t, Drought аnd Wilt Diseаses (Verticillium аnd Fusarium): Рrogress аnd Рersрeсtive // Front. Р1ай Sci. 2021. Vol. 12. P. 1-19.
  • ^en X. et al. Identifiсаtion аnd сhаrасterizаtion of рЩ^^ С1РК genes in mаize // Jourrnl of Genetics end Genomes. 2011. Vol. 38. P. 77-87.
  • ^en X. et al. ZmCIPK21, А Mаize СБL-Interасting Ki^se, Enhаnсes Sа1t Stress Tolerance in Arabidopsis thaliana // Int. J. Mol. Sci. 2014. Vol. 15. P. 14819-14834.
  • Deng X. et а1. ТаС!РК29, а СBL-Interаcting Ргс^т Kirnse Gene from Wheаt, infers Sа1t Stress Tolerate in Transgenic Totocco // РLoS ONE. 2013. Vol. 8, № 7. P. 1-13.
  • Gu S. et al. Trаnscriрtome-Wide Identificаtion md Functionа1 Сhаrаcterizаtion of СШК Gene Fаmi1у Members in Actinidia valvata under Sа1t Stress // Int. J. Mol. Sci. 2023. Vol. 24, № 1. P. 1-15.
  • Hoagland D.R., Arnon D.I. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 1950. 347 p.
  • Нш^а S. et al. СBL4-СIРK5 раthwау confers sа1t but not drought аnd chilling tolerance Ьу regu1аting ion homeostаsis // Environmen^l аnd Exрerimentа1 Бotаnу. 2020. Vol. 179. P. 1-30.
  • Huer!^ R. et al. Overexрression of S1SOS2 (S1СIРK24) confers sа1t tolerance to transgenic tomаto // Р1ай Сe11 Environ. 2012. Vol. 35. P. 1467-1482.
  • Jin X. et al. Wheаt СБL-interаcting рrotein kinаse 25 negаtive1у regu1аtes sа1t to1erаnce in trаnsgenic wheаt // Scientific Reрorts. 2016. Vol. 6. P. 1-16.
  • Kim K.N. et al. СТРЮ, а cа1cium sensor-аssociаted рrotein kinаse thаt reguktes аЬscisic аcid аnd cold sigrnl trаnsduction in АrаЬidoрsis // Ркй Сe11. 2003. Vol. 15. P. 411-423.
  • Li L. et al. А Са2+ sigrnling раthwау regu1аtes а K+ chаnne1 for low-K resрonse in АrаЬidoрsis // Ртос. Nаt1. Аcаd. Sci. 2006. Vol. 103. P. 12625-12630.
  • Lin С. et al. Integrated trаnscriрtome md рroteome аnа1уsis reveа1s comр1ex regu1аtorу mechаnism of cotton in resрonse to sа1t stress // Jourml of Сotton Reseаrch. 2021. Vol. 4. P. 1-13.
  • Lu L. et al. CIPK11: а са^^тт B-like рroteininterаcting рrotein kinаse from Nitraria tangutorum, confers tolerance to sа1t аnd drought in Arabidopsis // BMС Р1аnt Бio1ogу. 2021. Vol. 21. P. 1-16.
  • Mammadova R.B. et al. Prospects of the remote hybridization on improvement of the main economical traits of cotton genotypes with naturally colored fibre // East European Scientific Journal. 2021. Vol. 6, № 70. P. 4-7.
  • Pffafl M.W. A new mathematical model for relative quantification in real-time RT-PCR // Nucleic Acids Research. 2001. Vol. 29, № 9. P. 1-6.
  • Shu B. et al. Identifуing citrus CBL md CIPK gene fаmi1ies аnd their exрressions in resрonse to drought md аЛ^с^ат mуcorrhizа1 fungi co1onizаtion // Bio1ogiа Р1аntаrum. 2020. Vol. 64. P. 773-783.
  • Su Y. et al. GhCIPK6a increаses sа1t tolerance in transgenic ^knd cotton Ьу involving in ROS scаvenging аnd MАРK sigmling раthwауs // БMС Р1аnt Бio1ogу. 2020. Vol. 20. P. 1-19.
  • Taghizadeh N. et al. Salt-related Genes Expression Pattern in Salt-Tolerant and Salt Sensitive Cultivars of Cotton (Gossypium sp.) under NaCl Stress // J. Plant Mol. Breed. 2018. Vol. 6, № 1. P. 1-15.
  • Tansley C. et al. CIPK-B is essential for salt stress signalling in Marchantia polymorpha // New Phytologist. 2023. Vol. 237. P. 2210-2223.
  • Tripathi V. et al. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants // The Plant Journal. 2009. Vol. 58. P. 778-790.
  • Wei Y. et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis // PLoS ONE. 2017. Vol. 12, № 5. P. 1-25.
  • Xi Y. et al. The CBL and CIPK Gene Family in Grapevine (Vitis vinifera): Genome-Wide Analysis and Expression Profiles in Response to Various Abiotic Stresses // Front. Plant Sci. 2017. Vol. 8. P. 1-15.
  • Yang C. et al. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study // Front. Genet. 2022. Vol. 13. P. 1-17.
  • Yin X. et al. The protein kinase complex CBL10-CIPK8-S0S1 functions in Arabidopsis to regulate salt tolerance // J. Exp. Bot. 2020. Vol. 71. P. 1801-1814.
  • Yong X., Yuemin H., Lizhong X. Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement // Plant Physiology. 2007. Vol. 144. P. 1416-1428.
Еще
Статья научная