Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performance
Автор: Boori Mukesh Singh, Paringer Rustam Aleksandrovich, Choudhary Komal, Kupriyanov Alexander Victorovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 6 т.42, 2018 года.
Бесплатный доступ
The main aim of this research work is to compare k-nearest neighbor algorithm(KNN)super-vised classification with migrating means clustering unsupervised classification (MMC) method on the performance of hyperspectral and multispectral data for spectral land cover classes and de-velop their spectral library in Samara, Russia. Accuracy assessment of the derived thematic maps was based on the analysis of the classification confusion matrix statistics computed for each classi-fied map, using for consistency the same set of validation points. We were analyzed and compared Earth Observing-1 (EO-1) Hyperion hyperspectral data to Landsat 8 Operational Land Imager (OLI) and Advance Land Imager (ALI) multispectral data. Hyperspectral imagers, currently avail-able on airborne platforms, provide increased spectral resolution over existing space based sensors that can document detailed information on the distribution of land cover classes, sometimes spe-cies level. Results indicate that KNN (95, 94, 88 overall accuracy and .91, .89, .85 kappa coeffi-cient for Hyp, ALI, OLI respectively) shows better results than unsupervised classification (93, 90, 84 overall accuracy and .89, .87, .81 kappa coefficient for Hyp, ALI, OLI respectively). Develop-ment of spectral library for land cover classes is a key component needed to facilitate advance ana-lytical techniques to monitor land cover changes. Different land cover classes in Samara were sampled to create a common spectral library for mapping landscape from remotely sensed data. The development of these libraries provides a physical basis for interpretation that is less subject to conditions of specific data sets, to facilitate a global approach to the application of hyperspectral imagers to mapping landscape. In addition, it is demonstrated that the hyperspectral satellite image provides more accurate classification results than those extracted from the multispectral satellite image. The higher classification accuracy by KNN supervised was attributed principally to the ability of this classifier to identify optimal separating classes with low generalization error, thus producing the best possible classes’ separation.
Hyperspectral, multispectral, satellite data, land cover classification, remote sensing, supervised and unsupervised classification, spectral library
Короткий адрес: https://sciup.org/140238486
IDR: 140238486 | DOI: 10.18287/2412-6179-2018-42-6-1035-1045
Список литературы Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performance
- Boori, M.S. Food vulnerability analysis in the central dry zone of Myanmar/M.S. Boori, K. Choudhary, R.A. Paringer, M. Evers//Computer Optics. -2017. -Vol. 41, Issue 4. -P. 552-558. - DOI: 10.18287/2412-6179-2017-41-4-552-558
- Chen, F. Mapping urban land cover from high spatial resolution hyperspectral data: An approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis/F. Chen, K. Wang, T. Van der Voorde, T.F. Tang//Remote Sensing of Environment. -2017. -Vol. 196. -P. 324-342. - DOI: 10.1016/j.rse.2017.05.014
- Boori, M.S. A review of food security and flood risk dynamics in Central Dry Zone area of Myanmar/M.S. Boori, K. Choudhary, M. Evers, R. Paringer//Procedia Engineering. -2017. -Vol. 201. -P. 231-238. - DOI: 10.1016/j.proeng.2017.09.600
- Dalponte, M. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data/M. Dalponte, H.O. Ørka, L.T. Ene, T. Gobakken, E. Næsset//Remote Sensing of Environment. -2014. -Vol. 140. -P. 306-317. - DOI: 10.1016/j.rse.2013.09.006
- Clark, M.L. Mapping of land cover in northern California with simulated hyperspectral satellite imagery/M.L. Clark, N.E. Kilham//ISPRS Journal of Photogrammetry and Remote Sensing. -2016. -Vol. 119. -P. 228-245. - DOI: 10.1016/j.isprsjprs.2016.06.007
- Dudley, K.L. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients/K.L. Dudley, P.E. Dennison, K.L. Roth, D.A. Roberts, A.R. Coates//Remote Sensing of Environment. -2015. -Vol. 167. -P. 121-134. - DOI: 10.1016/j.rse.2015.05.004
- Lillesand, T.M. Remote Sensing and Image Interpretation/T.M. Lillesand, R.W. Kiefer. -New York: John Wiley & Sons, Inc., 2000. -ISBN: 978-0-471-25515-4. -P. 363-370.
- Boori, M.S. Vulnerability evaluation from 1995 to 2016 in Central Dry Zone area of Myanmar/M.S. Boori, K. Choudhary, A. Kupriyanov//International Journal of Engineering Research in Africa. -2017. -Vol. 32. -P. 139-154. - DOI: 10.4028/www.scientific.net/JERA.32.139
- Camps-Valls, G. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods/G. Camps-Valls, D. Tuia, L. Bruzzone, J.A. Benediktsson//IEEE Signal Processing Magazine. -2014. -Vol. 31, Issue 1. -P. 45-54. - DOI: 10.1109/MSP.2013.2279179
- Boori, MS. Environmental dynamics for Central Dry Zone area of Myanmar/M.S. Boori, K. Choudhary, M. Evers, A. Kupriyanov//International Journal of Geoinformatics. -2017. -Vol. 13, Issue 3. -P. 1-12.
- Parshakov, I. Z-Score distance: A spectral matching technique for automatic class labelling in unsupervised classification/I. Parshakov, C. Coburn, K. Staenz//IEEE Geoscience and Remote Sensing Symposium. -2014: -P. 1793-1796. - DOI: 10.1109/IGARSS.2014.6946801
- Earth Observing 1 (EO-1). -URL: http://eo1.usgs.gov (request date 12.11.2018).
- Bioucas-Dias, J.M. Hyperspectral remote sensing data analysis and future challenges/J.M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, J. Chanussot//IEEE Geoscience and Remote Sensing Magazine. -2013. -Vol. 1, Issue 2. -P. 6-36. - DOI: 10.1109/MGRS.2013.2244672
- Datt, B. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes/B. Datt, T.R. McVicar, T.G. Van Niel, D.L.B. Jupp, J.S. Pearlman//IEEE Transaction on Geoscience and Remote Sensing. -2003. -Vol. 41(6). -P. 1246-1259. - DOI: 10.1109/TGRS.2003.813206
- Lee JB, Woodyatt AS, Berman M., Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform. IEEE Transactions on Geoscience and Remote Sensing. -1990. -Vol. 28. -P. 295-304. - DOI: 10.1109/36.54356
- Pignatti, S. Evaluating hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy/S. Pignatti, R.M. Cavalli, V. Cuomo, L. Fusilli, S. Pascucci, M. Poscolieri, F. Santini//Remote Sensing of Environment. -2009. -Vol. 113, Issue 3. -P. 622-634. - DOI: 10.1016/j.rse.2008.11.006
- Dalponte, M. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data/M. Dalponte, H.O. Ørka, L.T. Ene, T. Gobakken, E. Næsset//Remote Sensing of Environment. -2014. -Vol. 140. -P. 306-317. - DOI: 10.1016/j.rse.2013.09.006
- Congalton, R. Assessing the accuracy of remotely sensed data: Principles and practices/R. Congalton, K. Green. -Boca Raton, FL: CRC Press, 1999. -P. 137. -ISBN: 978-0-87371-986-5.
- Underwood, E.C. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California/E.C. Underwood, S.L. Ustin, C.M. Ramirez//Environmental Management. -2007. -Vol. 39, Issue 1. -P. 63-83. - DOI: 10.1007/s00267-005-0228-9
- Shepherd, K.D. Infrared spectroscopy -enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries/K.D. Shepherd, M.G. Walsh//Journal of Near Infrared Spectroscopy. -2007. -Vol. 15, Issue 1. -P. 1-19. - DOI: 10.1255/jnirs.716