Composite materials in aircraft engine blades

Бесплатный доступ

The article investigates the strength of the propeller blades made of a multilayer composite material, subjected to centrifugal and gas loads with various combinations of fiberglass and carbon fiber and orientation of the material base. The finite element method is used as a research method. A propeller blade used in turbines of jet engines and compressors, made of composite materials, is considered as a naturally twisted rod, provided that the hypothesis of flat sections across the thickness of a multilayer composite package is valid under conditions of rigid contact at the boundary of layers. The propfan blade model is modeled by four-node finite elements of natural curvature with forty-eight degrees of freedom, taking into account the compression of the normal. The applied method for calculating the strength makes it possible to assess the strength of an arbitrarily reinforced blade in sections and layer by layer. The blades of hydrodynamic engines of the first and second stages were considered under the action of centrifugal and gas loads. The stress was determined at 17 points of 21 cross-sections in layers. As a result of the study, the strength parameters of the blades with different ratios of the dissimilar materials of the layers of the multilayer composite material were obtained. Conclusions are drawn, based on the fact that the blades made of composite material have significant advantages in terms of strength and weight characteristics compared to blades made of materials traditionally used in technology in the manufacture of propfans.

Еще

Strength, blades, aircraft engine, composite materials, finite element method

Короткий адрес: https://sciup.org/146282375

IDR: 146282375   |   DOI: 10.15593/perm.mech/2021.4.02

Список литературы Composite materials in aircraft engine blades

  • Kablov E.N. Innovative developments of FSUE "VIAM" SSC RF for the implementation of "Strategic directions for the development of materials and technologies for their processing for the period up to 2030". Aviation materials and technologies, 2015, no. 1, pp. 3-33.
  • Kablov E.N. New generation materials. Protection and security, 2014, no. 4, pp. 28-29.
  • Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovation. Wings of the Motherland, 2016, no. 5, pp. 8-18.
  • Postnova M.V., Postnov V.I. Experience in the development of non-autoclave methods for forming PCM. Trudy VIAM: electron scientific and technical journal, 2014, no. 4, pp. 65-70.
  • Khrulkov A.V., Grigoriev M.M., Yazvenko L.N. Prospects for the introduction of autoclave-free technologies for the manufacture of structural materials (review). Proceedings of VIAM, 2016, vol. 2, no. 38, pp. 45-52.
  • Timoshkov P.N., Khrulkov A.V., Yazvenko L.N., Usacheva M.N.Composite materials for autoclaveless technology (review). Proceedings of VIAM, 2018, vol. 3, no. 63, pp. 37-48.
  • Veselov S.I., Kartashov G.G.Composite materials in aircraft engine building. Kuibyshev, Textbook Kuibyshev KuAI, 1986, рp. 122.
  • Kogan D.I., Dushin M.I., Borshchev A.V., Veshkin E.A., Abramov P.A., Makrushin K.V. Properties of structural carbon-fiber reinforced plastics made by impregnation under vacuum. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 2012, vol. 4, no. 2, pp. 762-766.
  • Savin S.P. The use of modern polymer composite materials in the airframe design of aircraft of the MS-21 family. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 2012, vol. 4, no. 2, pp. 686-693.
  • Chursova L.V., Panina N.N., Grebeneva T.A., Terekhov I.V. Thermosetting binders and polymer binders for polymer composite materials obtained by vacuum infusion (review). Plastic mass, 2018, vol. 1, no. 2, pp. 57-64.
  • Panina N.N., Kim M.A., Gurevich Ya.M., Grigoriev M.M., Chursova L.V., Babin A.N. Binders for non-autoclave molding of products from polymer composite materials. Adhesives Sealants Technologies, 2013, no. 10, pp. 18-27.
  • Kablov L.V., Chursova N.F., Lukina K.E., Kutsevich E.V., Rubtsova A.P. Investigation of epoxy-polysulfone polymer systems based on high-strength aviation adhesives. Adhesives Sealants Technologies, 2017, no. 3, pp. 7-12.
  • Vlasenko F.S., Raskutin A.E. Application of polymer composite materials to building structures. In: Proceedings of VIAM No 8 St Working materials: carbon fiber reinforced plastic, 2013, available at: http://ustroistvo-avtomobilya.ru/e-kspluatatsionny-e-materialy/ugleplastiki/
  • Birger I.A. Manual for designers for calculating the strength of a gas turbine engine Calculation of blades for strength. Oborongiz, 1965, no. 2, pp. 101-112.
  • Shorr BF. Calculation of the strength of naturally twirled blades. Proceedings of CIAM, 1951, no. 256, pp. 2-18.
  • Veselov S.I., Kartashov G.G.Composite materials in aircraft engine building. Kuibyshev, 1986, p. 121.
  • Kuznetsov N.D., Kartashov G.G. Own oscillations of layered anisotropic plates and shallow shells. Applied Mechanics, 1981, vol. 17, no. 4, pp. 31-37.
  • Bate K., Wilson E. Numerical analysis methods and the finite element method. Moscow, Stroyizdat, 1982.
  • Lyubin Y.Composite materials. Moscow, Mechanical Engineering, 1988, p. 256.
  • Zhernakov V.S., Pervushin Yu.S., Soloviev P.V. Influence of the structure of a composite blade of a centrifugal compressor on its stress-strain state. Vestnik USATU, 2017, vol. 3, no. 77, pp. 19-25.
  • Mahajan P., Bhatnagar N. Micro-machanical modeling of FRP composites - Cutting forse analysis.Composites science and technology, 2007, vol. 67, pp. 579-593.
  • Brinksmeier E., Fangmann S. Drilling of composites and resulting surface integrity. Manufacturing technology, 2011, vol. 60, pp. 57-60.
  • Balle F., Huxhold S. Damage Monitoring of Ultrasonically Welded Aluminum / CFRP-Joints by Electrical Resistance Measurements. Procedia Engineering, 2011, no. 10, pp. 433-438.
  • Sen T., Reddy H. Strengthening of RC beams in flexure using natural jute fibre - textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems.International Journal of Sustainable Built Environment, 2013, no. 2, pp. 41-55.
  • Hintze W., Hartmann D. Modeling of delamination during milling of unidirectional CFRP. Procedia CIRP, 2013, no. 8, pp. 444-449.
  • Li Y., Hori N. Improvement of interlaminar mechanical properties of CFRP laminates using VGCF.Composites, 2009, no. 40, pp. 2004-2012.
  • Gao F., Boniface L. Damage accumulation in woven-fabric CFRP laminates under tensile loading: 2 Modeling the effect of damage on macro-mechanical properties.Composites Science and Technology, 1999, no. 59, pp. 137-145.
  • Bielawski R.Composite materials in military aviation and selected problems with implementation. Review of the Air Force Academy, 2017, no. 1, pp. 11-16.
  • Omari M.A., Mousa H.M., AL-Oqla F.M., Aljarrah M. Enhancing the surface hardness and roughness of engine blades using the shot peening process.International Journal of Minerals, Metallurgy, and Materials, 2019, vol. 26 (8), рр. 999-1004.
  • Sastry Y.S., Kiros B.G., Hailu F., Budarapu P.R. Impact analysis of compressor rotor blades of an aircraft engine. Frontiers of Structural and Civil Engineering, 2019, vol. 13 (3), рр. 505-514.
Еще
Статья научная