Compositional variation of chrome spinels in the ore-bearing zones of the kraka ophiolite and the chromitite origin
Автор: Saveliev D.E., Blinov I.A.
Журнал: Вестник Пермского университета. Геология @geology-vestnik-psu
Рубрика: Геология, поиски и разведка твёрдых полезных ископаемых, минерагения
Статья в выпуске: 2 т.16, 2017 года.
Бесплатный доступ
The article considers a chemical variation of accessory and ore-forming chrome spinels from the Kraka ultramafic massif at the different scales, from the deposit to the thin section. A correlation analysis of compositional and structural features of ultramafic rocks and ores was performed. The ultramafic rocks and chromitites in the studied massif show the distinct deformation structures and tectonite olivine fabric. A typical chemical gap (i.e. Cr#=Cr/(Cr+Al)) was observed between peridotite, on the one hand, and dunite and chromitite, on the other hand, on the scale of deposits and ore-bearing zones. The location and size of this gap depend on the type of deposit. The gap becomes wider from the disseminated tabular bodies to the typical podiform ones. It has been found that in the thin initial dunite veinlets in peridotite the chrome spinels chemistry changes gradually and there is no Cr# gap between peridotite and dunite. The dunite venlets show a strong olivine fabric, which is an evidence of their high-temperature plastic flow origin. It has been revealed that new chrome spinel grains previously formed as rods or needles and then coarsened. We explained this observation as the result of impurity segregation, coalescence and spheroidization induced by the plastic deformation of olivine. It is inferred that a solid crystal flow is the main requirement for the dunite and chromitite body formation in the Kraka ophiolite massif. In the solid stream, the mineral phase separation takes place. For example, olivine and orthopyroxene grains of parental peridotite separate from one another, and weaker (more mobile) olivine grains form dunite bodies in which chromitite appears as a result of impurity segregation.
Chrome spinel, ophiolite, ultramafic rocks, plastic flow, podiform chromitite
Короткий адрес: https://sciup.org/147201015
IDR: 147201015 | DOI: 10.17072/psu.geol.16.2.130
Список литературы Compositional variation of chrome spinels in the ore-bearing zones of the kraka ophiolite and the chromitite origin
- Ahmed Z. 1984. Stratigraphic and textural variations in the chromite composition of the oph-iolitic Sakhakot-Qila Complex, Pakistan. Economic Geology and Bull. Soc. Econ. Geologists. 79:1334-1359
- Arai S., Miura M. 2015. Podiform chromitites do form beneath mid-ocean ridges. Lithos. 232:143-149 DOI: 10.1016/j.lithos.2015.06.015
- Ballhaus C. 1998. Origin of the podiform chro-mite deposits by magma mingling. Earth and Planetary Science Letters. 156:185-193 DOI: 10.1016/S0012-821X(98)00005-3
- Barnes S., Roeder P. 2001. The Range of spinel compositions in terrestrial mafic and ultra-mafic rocks. Journal of Petrology. 42:22792302 DOI: 10.1093/petrology/42.12.2279
- Carter N.L. 1976. Steady state flow of rocks. Rev. Geophys. and Space Phys. 14:301-360 DOI: 10.1029/RG014i003p00301
- Cassard D., Nicolas A., Rabinowitch M., Moutte J., Leblanc M., Prinzhoffer A. 1981. Structural Classification of Chromite Pods in Southern New Caledonia. Economic Geology.76:805-831
- Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. 2007. Kristallokhimiya khromshpineli i oksitermobarometriya ultramafitov sklad-chatykh oblastey . IG&G UrO RAN. Yekaterinburg, p. 310.
- Chernyshov A.I. 2001. Ultramafity (plasticheskoe techenie, strukturnaya i petrostrukturnaya neodnorodnost) . Charodey, Tomsk, p.215.
- Chernyshov A.I., Yurichev A.N. 2013. Petro-strukturnaya evolyutsiya ultramafitov Kalninskogo khromitonosnogo massiva v Zapadnom Sayane . Ge-otektonika, 4:31-46
- Denisova E.A. 1990. Stroenie i deformatsionnye struktury ofiolitovykh massivov s lertsoli-tovym tipom razreza . Geotektonika. 2:14-27.
- Dick H.J.B., Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol. 86:54-76 DOI: 10.1007/BF00373711
- Dickey J.S. 1975. A hypothesis of origin for podi-form chromite deposits. Geochim. et Cosmo-chim. Acta. 39:1061-1075 DOI: 10.1016/0016-7037(75)90047-2
- Fedoseev V.B. 2016. Stratification of two-phase monodisperse system in a laminar planar flow. Journal of Experimental and Theoretical Physics. 149(4):1-11
- Franz L., Wirth R. 2000. Spinel inclusions in oli-vine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermalandtectonic evolution of the oceaniclithosphere. Contrib. Mineral. Petrol. 140:283-295 DOI: 10.1007/s004100000188
- Goncharenko A.I. 1989. Deformatsiya i petro-strukturnaya evolyutsiya alpinotipnykh gi-perbazitov . Tomsk University Publishing. Tomsk, p. 404.
- Gonzalez-Jimenez J.M., Griffin W.L., Proenza A., Gervilla F., O'Reilly S.Y., AkbulutM., Pearson N.J., Arai S. 2014. Chromitites in ophio-lites: how, where, when, why? Part II. The crystallisation of chromitites. Lithos. 189:148-158 DOI: 10.1016/j.lithos.2013.09.008
- Gonzalez-Jimenez J.M., Proenza J.A., Gervilla F., Melgarejo J.C., Blanco-Moreno J.A., Ruiz-Sanchez R., Griffin W.L. 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constrains on their origin from mineralogy and geochemistry of chromian spinel and platinum-group-elements. Lithos. 125:101-121 DOI: 10.1016/j.lithos.2011.01.016
- Greenbaum D. 1977. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology. 72:1175-1194 DOI: 10.2113/gsecongeo.72.7.1175
- Hock M., Friedrich G., Plueger W.L., Wichowski A. 1986. Refractory-and metallurgical-type chromite ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita. 21:190199 DOI: 10.1007/BF00199799
- Irvine T.N. 1965. Chromian spinel as a petroge-netic indicator. Part I: Theory. Canadian Journal Earth Science. 2:648-672 DOI: 10.1139/e65-046
- Kazantseva T.T., Kamaletdinov M.A. 1969. Ob allokhtonnom zaleganii giperbazitovykh massivov zapadnogo sklona Yuzhnogo Urala . Doklady AN USSR. 189:1077-1080.
- Kelemen P.B., Dick H.J.B., Quick J.E. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature. 358:635-641 DOI: 10.1038/358635a0
- Kelemen P.В., Shimizu N., Salters V.J.M. 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature. 375:747-753 DOI: 10.1038/375747a0
- Kohlstedt D.L., Goetze C., Durham W.B., Sande van der J.B. 1976. A new technique for decorating dislocations in olivine. Sci-ence.191:1045-1046 DOI: 10.1126/science.191.4231.1045
- Kravchenko G.G. 1969. Rol tektoniki pri kristal-lizatsii khromitovykh rud Kempirsayskogo plutona . Moskva, Nauka, p.232.
- Kubo K. 2002. Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake Peridotite, Hokkaido, Japan. Journal of Petrology. 43:423-448 DOI: 10.1093/petrology/43.3.423
- Lago B.L., Rabinowicz M., Nicolas A. 1982. Podiform chromite ore bodies: a genetic model. Journal of Petrology. 23:103-125 DOI: 10.1093/petrology/23.1.103
- Leblanc M. 1980. Chromite Growth, Dissolution and Deformation from a Morphological View Point: SEM Investigations. Mineralium Deposita (Berl.). 15:201-210. doi: 10.1007/BF00206514
- Leblanc M., Violette, J.-F. 1983. Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites. Economic Geology.78:293-301 DOI: 10.2113/gsecongeo.78.2.293
- Matsumoto I., Arai S. 2001. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun zone (SW Japan): implications for mantle/melt reaction and chromitite formation processes. Mineralogy and Petrology. 73:305-323 DOI: 10.1007/s007100170004
- Matveev S., Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters. 203:235-243 DOI: 10.1016/S0012-821X(02)00860-9
- McElduff B., Stumpfl E.F. 1991. The chromite deposits of the Troodos complex, Cyprus -evidence for the role of a fluid phase accompanying chromite formation. Mineralium Deposita. 26:307-318 DOI: 10.1007/BF00191079
- Melcher F., Grum W., Simon G., Thalhammer T.V., Stumpfl E.F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempir-sai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology. 38:1419-1458
- Morishita T., Andal E.S., Arai S., Ishida Y. 2006. Podiform chromitites in the lherzolite-dominant mantle section of the Isabela ophio-lite, the Philippines. Island Arc. 15:84-101 DOI: 10.1111/j.1440-1738.2006.00511.x
- Nicolas A., Bouchez J.L., Boudier F., Mercier J.C. 1971. Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics. 12:55-86 DOI: 10.1016/0040-1951(71)90066-7
- Novikov I.I. 1986. Teoriya termicheskoy obrabotki metallov . Moskow, Metallurgiya, p. 480.
- Pavlov N.V., Kravchenko G.G., Grigoryeva-Chuprynina I.I. 1968. Khromity Kempir-sayskogo plutona . Moskow, Nauka, p. 178.
- Perevozchikov B.V. 1995. Zakonomernosti loka-lizatsii khromitovogo orudeneniya v al-pinotipnykh giperbazitakh . Geoinformmark. Moskow.
- Perevozchikov B.V., Bulykin L.D., Popov I.I. et al. 2000. Reestr khromitovykh mestorozh-deniy v alpinotipnykh giperbazitakh Urala . Perm, KamNIIKIGS, p. 474.
- Poirier J.-P. 1985. Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. London, Cambridge University Press
- Poiski, razvedka i otsenka khromitovykh mes-torozhdeniy . Eds. Smirnova T.A., Segalovich V.I. 1987. Moscow. Nedra.
- Prichard H.M., Barnes S.J., Godel B., Reddy S.M., Vukmanovic Z., Halfpenny A., Neary C.R., Fisher P.C. 2015. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction. Lithos. 218219:87-98 DOI: 10.1016/j.lithos.2015.01.013
- Proenza J., Gervilla F., Malgarejo J.C., Bodinier J.L. 1999. Al-and Cr-rich chromitites from the Mayari-Baracoa ophiolite Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in su-prasubduction mantle. Economic Geology. 94:547-566 DOI: 10.2113/gsecongeo.94.4.547
- Roberts S. 1988. Ophiolitic chromite formation: a marginal basin phenomenon? Economic Geology. 83:1034-1036. doi: 10.2113/gsecongeo.83.5.1034
- Saveliev D.E. 2012. Khromitonosnost giperba-zitovykh massivov Yuzhnogo Urala [Chro-mite content of ultrabasic massifs of the Southern Urals. Diss. Dr. Geol.-Min. Sci., Perm State University.
- Saveliev D.E. 2013a. Proiskhozhdenie nod-ulyarnykh tekstur (na primere khromitov vos-tochnoy chasti massiva Sredniy Kraka, Yu-zhnyy Ural) [Origin of nodular texture (example of chromite from the eastern part of Sredniy Kraka massif, Southern Urals). Rudy i metally. 5:41-49
- Saveliev D.E. 2013b. Sootnoshenie struktur ru-donosnoy dunit-khromitovoy assotsiatsii I peridotitov v ofiolitakh (na primere massivov Kraka) [Relationship between the structures of ore-bearing dunite-chromitite association and peridotites in the ophiolites (on the example of Kraka massifs). Litosfera. 2:76-91
- Saveliev D.E., Blinov I.A. 2015. Sindefor-matsionnye vydeleniya khromshpinelidov v plasticheski deformirovannykh agregatakh olivina (ofiolity Kraka, Yuzhnyy Ural) Vest-nik Permskogo Universiteta. Geologiya, 4(29):45-69 DOI: 10.17072/psu.geol.29.44
- Saveliev D.E., Fedoseev V.B. 2011. Segre-gatsionnyy mekhanizm formirovaniya tel khromitov v ultrabazitakh skladchatykh poyasov . Rudy i metally. 5:35-42.
- Saveliev D.E, Fedoseev V.B. 2014. Plasticheskoe techenie i reomorficheskaya differentstatsiya veshchestva v mantiynykh ultramafitakh Vestnik Permskogo universiteta. Geologiya. 4(25):22-41 DOI: 10.17072/psu.geol.25.22
- Saveliev D.E., Kozhevnikov D.A. 2015. Strukturnye i petrograficheskie osobennosti ultramafitov na uchastke mestorozhdeniya #33 v vostochnoy chasti massiva Sredniy Kraka (Yuzhnyy Ural) Vestnik Permskogo Universiteta. Geologiya. l(26):60-84 DOI: 10.17072/psu.geol.26.60
- Saveliev D.E., Snachev V.I. 2012. Bednov-kraplennye khromovye rudy Yuzhnogo Urala i perspektivy ikh prakticheskogo ispol-zovaniya . Rudy i metally. 2:36-40.
- Saveliev D.E., Belogub E.V., Kotlyarov V.A. 2014. Mineralogo-geokhimicheskaya zonal-nost i deformatsionnyy mekhanizm formiro-vaniya khromitit-dunitovykh tel v ofiolitakh (na primere massiva Kraka, Yuzhnyy Ural) . In Metallogeniya drevnikh i sovremennykh okeanov -2014. IMin UrO RAN, Miass, pp. 95-98
- Saveliev D.E., Snachev V.I., Savelieva E.N., Bazhin E.A. 2008. Geologiya, petrogeokhimiya i khromitonosnost gabbro-giperbazitovykh massivov Yuzhnogo Urala . Ufa, DizaynPoligrafServis. p. 320.
- Savelieva G.N. 1987. Gabbro-ultrabazitovye kompleksy ofiolitov Urala i ikh analogi v sovremennoy okeanicheskoy kore . Nauka. Moscow, p. 230.
- Senchenko G.S. 1976. Skladchatye struktury Yu-zhnogo Urala . Nauka. Moscow, p. 172.
- Shcherbakov S.A. 1990. Plasticheskie deformatsii ultrabazitov ofiolitovoy assotsiatsii Urala . Moscow. Nauka, p. 120.
- Snachev V.I., Saveliev D.E., Rykus M.V. 2001. Petrogeokhimicheskie osobennosti porod i rud gabbro-giperbazitovykh massivov Kraka . Bash-GU. Ufa, p. 212.
- Thayer T.P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Economic Geology. 59:1497-1524 DOI: 10.2113/gsecongeo.59.8.1497
- Yamamoto J., Ando J., Kagi H., Inoue T., Yamada A., Yamazaki D., Irifune T. 2008. In situ strength measurements on natural upper-mantle minerals. Phys. Chem. Minerals. 35:249-257 DOI: 10.1007/s00269-008-0218-6
- Zhou M.-F., Malpas J., Robinson P.T., Sun M., Li J.-W. 2001. Crystallization of podiform chromitites from silicate magmas and the formation of nodular textures. Resource Geology. 51:1-6. 3928.2001.tb00076.x DOI: 10.1111/j.1751-
- Zhou M.-F., Robinson P. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review. 36:678 -686 DOI: 10.1080/00206819409465481