Compound bending of an orthotropic plate

Автор: R. A. Sabirov

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 4 vol.21, 2020 года.

Бесплатный доступ

The problem of longitudinal-transverse deformation and strength of an orthotropic plate on the action of a local transverse force and stretching along the contour of the membrane forces is studied. The direction of laying the fiber of a unidirectional composite that provides the lowest level of stress and deflection is determined. In the zone of application of concentrated force in thin-walled structures, significant bending moments and shear forces occur, which are a source of stress concentration. To reduce stresses, the method of plate tension by membrane forces applied along the contour is chosen. The maximum possible order of membrane tension forces is selected, which provides conditions for the strength and rigidity of the solar panel plate structure, which has a hinge-fixed support along the contour. Pre-tensioning the plate web allows to reduce the stress by 50 times. The problem of compound bending of isotropic and anisotropic plates when applying transverse and selection of longitudinal loads, with restrictions on strength and stiffness, can be called a problem of rational design of the structure. The resulting equations and calculation program can be used in the design of plate structures, as well as in the educational process.

Еще

Plate bending, longitudinal-transverse deformation.

Короткий адрес: https://sciup.org/148321774

IDR: 148321774   |   DOI: 10.31772/2587-6066-2020-21-4-499-513

Список литературы Compound bending of an orthotropic plate

  • Morozov E. V., Lopatin A. V. Analysis and design of the flexible composite membrane stretched on the spacecraft solar array frame. Composite Structures. 2012, No. 94, P. 3106–3114.
  • Lopatin A. V., SHumkova L. V., Gantovnik V. B. Nelineynaya deformaciya ortotropnoj membrany, rastyanutoj na zhestkoj rame solnechnogo elementa. V: Protokol 49 konferencii AIAA / ASME / ASCE / AHS / ASC, strukturnoj dinamiki i materialov, 16 konferencii AIAA /ASME / AHS po adaptivnym strukturam. 10t, Schaumburg, IL: AIAA-2008-2302 [Nonlinear deformation of an orthotropic membrane stretched on a rigid frame of a solar cell. In: Minutes of the 49th AIAA / ASME / ASCE / AHS / ASC Conference, Structural Dynamics and Materials, 16th AIAA / ASME / AHS Conference on Adaptive Structures. 10t, schaumburg, il: aiaa-2008-2302]. April 7–10, 2008.
  • Vasil'ev V. V., Protasov V. D., Bolotin V. V. et al. Kompozicionnye materialy: Spravochnik [Composite materials: handbook]. Moscow, Mashinostroenie Publ., 1990, 512 p.
  • Papkovich P. F. Stroitel'naya mekhanika korablya. CHast' II. Slozhnyy izgib, ustojchivost' sterzhney i ustojchivost' plastin [Construction mechanics of the ship. Part II. Complex bending, stability of rods and stability of plates]. Leningrad, Sudpromgiz Publ., 1941, 960 p.
  • Papkovich P. F. Stroitel'naya mekhanika korablya [Construction mechanics of the ship]. Vol. 1. Iss. 1. Moscow, Morskoy transport Publ., 1945, 618 p.
  • Lukasevich S. Lokal'nye nagruzki v plastinah i obolochkah [Local loads in plates and shells]. Moscow, Mir Publ., 1982, 544 p.
  • Novozhilov V. V. Osnovy nelinejnoj teorii uprugosti [Fundamentals of the nonlinear theory of elas ticity]. Leningrad – Moscow, OGIZ-Gostekhizdat Publ., 948, 212 p.
  • Timoshenko S. P. Ustoychivost' uprugih system [Stability of elastic systems]. Leningrad – Moscow, OGIZ-Gostekhizdat Publ., 1946, 532 p.
  • Timoshenko S. P., Yung D. Inzhenernaya mekhanika [Engineering mechanics]. Moscow, Mashgiz Publ., 1960, 508 p.
  • Lyav A. Matematicheskaya teoriya uprugosti [Mathematical theory of elasticity]. Moscow, ONTI Publ., 1935.
  • Vol'mir A. S. Gibkie plastinki i obolochki [Flexible plates and shells]. Moscow, Gostekhizdat Publ., 1956, 419 p.
  • Il'yushin A. A., Lenskiy V. S. Soprotivlenie materialov [Resistance of materials]. Moscow, Fizmatgiz Publ., 1959, 372 p.
  • Kauderer G. Nelineynaya mekhanika [Nonlinear mechanics]. Moscow, Izd-vo inostrannoy literatury Publ., 1961, 778 p.
  • Lejbenzon L. S. Kurs teorii uprugosti [Course of the theory of elasticity]. Leningrad – Moscow, OGIZ Publ., 1947, 465 p.
  • Lukash P. A. Osnovy nelineynoy stroitel'noy mekhaniki [Fundamentals of nonlinear construction mechanics]. Moscow, Stroyizdat Publ., 1978, 204 p.
  • Novackij V. Teoriya uprugosti [Theory of elasticity]. Moscow, Mir Publ., 1975, 872 p.
  • Lekhnickiy S. G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of an anisotropic body]. Moscow, Nauka Publ., 1977, 416 p.
  • Samarskij A. A. Teoriya raznostnyh skhem [Theory of difference schemes]. Moscow, Nauka Publ., 1977, 656 p.
  • Govoruhin V., Cybulin V. Komp'yuter v matematicheskom issledovanii. Uchebnyy kurs [Computer in mathematical research: training course]. St. Petersburg, Piter Publ., 2001, 624 p.
Еще
Статья научная