Corrosive fluid effects on volute surface roughness in centrifugal pumps: a computational study
Автор: Abbas K., Bhutto A.A., Abubakar A.M., Usman I.U., Sarkinbaka Z.M., Saka T., Alhodali M.a.Ja., Ellouze M.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Математическое моделирование. Численный эксперимент
Статья в выпуске: 1 т.18, 2025 года.
Бесплатный доступ
Corrosive fluids, namely, hydrogen peroxide (H2O2), hydrochloric acid (HCl) and sulfuric acid (H2SO4) can be used as a working fluid for volute surface roughness to study its impact on an existing H47 centrifugal pump. To analyse the effects of volute surface roughness, ANSYS student version 2023 software was used - wherein; head rise (H), pump speed (N), discharge rate (Q), inlet pressure and roughness height (h) of 20-40 m, 2000 rpm, 144 m3/h, 0 atm and 0.5 m, were respectively specified as initial and boundary conditions in the computational fluid dynamics (CFD) tool. CFD of volute roughness were respectively simulated for all corrosive fluids to obtain pressure and velocity distribution and profile plots of the analysis using fluid constant properties. The presence of volute wall roughness was observed to increase hydraulic losses in the volute when using corrosive fluids. The hydraulic loss in the volute due to wall roughness is influenced by the viscosity of the respective fluids. Denser fluids, like HCl and H2SO4 required more input power for the same flow rate, highlighting the viscosity-dependent nature of hydraulic losses. Smoothing and refining the volute wall may lead to a significant increase in pump performance without compromising impeller flow conditions. Exploring the effects of smoothing and roughening the volute wall on pump performance should be investigated.
Impeller volute, centrifugal pump, corrosive fluids, ansys, surface roughness
Короткий адрес: https://sciup.org/146283031
IDR: 146283031
Список литературы Corrosive fluid effects on volute surface roughness in centrifugal pumps: a computational study
- Al-Obaidi A., Pradhan S., Asim T., Mishra R. & Zala K. Numerical studies of the velocity distribution within the volute of a centrifugal pump. Presented at 27th Condition Monitoring and Diagnostic Engineering Management International Congress 2014 (COMADEM 2014), 2014, 16–18 September 2014, Brisbane, Australia. https://rgu-repository.worktribe.com/output/872494
- Bellary S. A. I. & Samad A. Improvement of efficiency by design optimization of a centrifugal pump impeller. Proceedings of the ASME Turbo Expo 2014: Turbo Technical Conference and Exposition. Volume 2D: Turbomachinery. [June 16–20, 2014. V02DT42A007], 2D. https://doi.org/10.1115/GT2014–25217
- Bellary S. A. I. & Samad A. Pumping crude oil by centrifugal impeller having different blade angles and surface roughness. Journal of Petroleum Exploration and Production Technology, 2016, 6(1), 117–127. https://doi.org/10.1007/s13202–015–0173-y
- Fard M. H. S. & Boyaghchi F. A. Studies on the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences, 2007, 4(9), 718–724. https://doi.org/10.3844/ajassp.2007.718.724
- Idris M. N. & Kois A. A. Application of CFD to improve on reliability and efficiency of Centrifugal pump for oil and gas processing plant. African Journal of Engineering and Environment Research, 2022, 3(1), 128–143. https://doi.org/10.37703/ajoeer.org.ng/q1–2022/08
- Idris M. N. & Tijjani A. M. Experimental simulation on impeller volute to determine the surface roughness in centrifugal pump using corrosive fluid. African Journal of Engineering and Environment Research, 2024, 5(2), 1–17. https://ajoeer.org.ng/otn/ajoeer/2024/qtr‑1/06.pdf
- Idris M. N. & Usman I. U. Design studies using corrosive and non-corrosive materials to improve on reliability and efficiency of an impeller of a centrifugal pump. The Electrochemical Society (ECS) Meeting Abstracts, Volume MA2022–02 Z01: General Student Poster Session, 2022, MA2022–02(64), 2345–2345. https://doi.org/10.1149/MA2022–02642345mtgabs
- Kocaaslan O., Ozgoren M., Aksoy M. H. & Babayigit O. Experimental and numerical investigation of coating effect on pump impeller and volute. Journal of Applied Fluid Mechanics (JAFM), 2016, 9(5), 2475–2487. https://doi.org/10.18869/acadpub.jafm.68.236.25094
- Li X., Chen H., Chen B., Luo X., Yang B. & Zhu Z. Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method. Renewable Energy, 2020, 162, 561–574. https://doi.org/10.1016/j.renene.2020.08.103
- Usman I. U., Abbas K., Abubakar A. M., Mönnig R., Abdul A. Z. & Alhodali M. A.-J. ANSYS-CFX simulation and experimental studies on centrifugal pump impeller design: Performance effects using corrosive and non-corrosive resources. International Journal of Engineering and Applied Physics (IJEAP), 2023, 3(2), 765–779. https://doi.org/10.1080/19942060.2020.1868341
- Usman I. U. & Idris M. N. Experimental studies and designs using corrosive and non-corrosive materials to improve on reliability and efficiency of an impeller of a centrifugal pump. In M. N. Idris (Ed.), CHE 599 Proposal Presentation 2021/2022 Session (pp. 1–1). Chemical Engineering Department, University of Maiduguri. 2021. https://www.researchgate.net/publication/356894529
- Varley F. A. Effects of impeller design and surface roughness on the performance of centrifugal pumps. Proceedings of the Institution of Mechanical Engineers, 1961, 175(1). https://doi.org/10.1243/PIME_PROC_1961_175_06