Covalent doping of g-C3N4 with the benzo[c][1,2,5]-chalcogenadiazole acceptor blocks: photocatalysis and electronic structure

Автор: Chernukha A.S., Zirnik G.M., Mustafina K.E., Nekorysnova N.S., Abramyan A.D., Grigoreva E.A., Bolshakov O.I.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Физическая химия

Статья в выпуске: 4 т.14, 2022 года.

Бесплатный доступ

The methodology of in situ thermal synthesis has been developed for the semiconductors based on graphitic carbon nitride (g-C3N4) doped by benzo[c][1,2,5]chalcogenadiazoles (chalcogen Ch = O, S, Se). Benzo[c][1,2,5]chalcogendiazoles were obtained by methods previously presented in the literature. The purity of the resulting organic structures was confirmed by 1H and 13C NMR, GC-MS, IR-spectroscopy, elemental analysis, and the melting point determination. The technique for obtaining g-C3N4 samples consists in sintering melamine and the required acceptor block mixture at 550 °C in a neutral atmosphere. For pure and doped g-C3N4 its structure formation fact was confirmed by PXRD, IR-spectroscopy and 13C NMR. Semiconductor and other properties of carbon nitride materials were studied by UV-spectroscopy, PL-spectroscopy, cyclic voltammetry technique, SEM conbined with EDS, as well as by plotting nitrogen sorption-desorption isotherms. A series of photocatalytic water-splitting experiments under the UV-light (λ = 365 nm) action in the presence of samples of pure and doped carbon nitride as a photocatalyst, hexachloroplatinic acid as a co-catalyst, and triethanolamine as a electron-sacrificial agent was carried out. The amount of hydrogen formed during the water-splitting experiment was determined for every hour using the GC-method. It was found that all three dopants positively affected photophysical and catalytic properties of the materials. Quantum chemical calculations confirmed that the benzo[c][1,2,5]chalcogenadiazoles served as acceptor blocks with accumulation of the most of the HOMO electron density.

Еще

Carbon nitride, molecular doping, covalent doping, benzochalcogendiazole, acceptor blocks, photocatalysis, water splitting, hydrogen evolution

Короткий адрес: https://sciup.org/147239539

IDR: 147239539   |   DOI: 10.14529/chem220410

Список литературы Covalent doping of g-C3N4 with the benzo[c][1,2,5]-chalcogenadiazole acceptor blocks: photocatalysis and electronic structure

  • Ong W.J., Tan L.L., Ng Y.H., Yong S.T., Chai S.P. Graphitic carbon nitride (g-C3N4) - based pho-tocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews. 2016;116(12):7159-7329. DOI: 10.1021/ acs.chemrev.6b00075
  • Kessler F.K., Zheng Y., Schwarz D., Merschjann C., Schnick W., Wang X., Bojdys M.J. Functional carbon nitride materials - design strategies for electrochemical devices. Nature Reviews Materials. 2017;2:17030. DOI: 10.1038/natrevmats.2017.30
  • See K.A., Hug S., Schwinghammer K., Lumley M.A., Zheng Y., Nolt J.M., Stucky G.D., Wudl F., Lotsch B.V., Seshadri R. Lithium charge storage mechanisms of cross-linked triazine networks and their porous carbon derivatives. Chemistry of Materials. 2015;27(11):3821-3829. DOI: 10.1021/acs.chemmater.5b00772
  • Braml N.E., Stegbauer L., Lotsch B.V., Schnick W. Synthesis of triazine-based materials by functionalization with alkynes. Chemistry - A European Journal. 2015;21(21):7866-7873. DOI: 10.1002/chem.201405023
  • Xu J., Zhang L., Shi R., Zhu Y. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Material Chemistry A. 2013;1(46):14766-14772. DOI: 10.1039/C3TA13188B
  • Rahman M.Z., Ran J., Tang Y., Jaroniec M., Qiao S.Z. Surface activated carbon nitride nano-sheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Material Chemistry A. 2016;(7):2445-2452. DOI: 10.1039/C5TA10194H
  • She X., Xu H., Xu Y., Yan J., Xia J., Xu L., Song Y., Jiang Y., Zhang Q., Li H. Exfoliated gra-phene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. Journal of Material Chemistry A. 2014;2(8):2563-2570. DOI: 10.1039/C3TA13768F
  • Lin Q., Li L., Liang S., Liu M., Bi J., Wu L. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental. 2015;163:135-142. DOI: 10.1016/J.APCATB.2014.07.053
  • Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society. 2012;135(1): 1821. DOI: 10.1021/ja308249k
  • Tong J., Zhang L., Li F., Wang K., Han L., Cao S. Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution. RSCAdvences. 2015;5(107):88149-88153. DOI: 10.1039/C5RA16988G
  • Cheng F., Wang H., Dong X. The Amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly Route. Chemical Communications. 2015;5(107):7176-7179. DOI: 10.1039/C5CC01035G
  • Yin Y., Han J., Zhang X., Zhang Y., Zhou J., Muir D., Sutarto R., Zhang Z., Liu S., Song B. Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Advences. 2014;4(62):32690-32697. DOI: 10.1039/C4RA06036A
  • Ma L., Fan H., Li M., Tian H., Fang J., Dong G. A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light. Journal of Material Chemistry A. 2015;3(44):22404-22412. DOI: 10.1039/C5TA05850C
  • Xu H., Yan J., She X., Xu L., Xia J., Xu Y., Song Y., Huang L., Li H. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale. 2014;6(3):1406-1415. DOI: 10.1039/C3NR04759H
  • Horbett T. Biological activity of adsorbed proteins, in: surfactant science series. Biology. 2010;393-413. DOI: 10.1201/9780824747343.ch15.
  • Qiu P., Chen H., Xu C., Zhou N., Jiang F., Wang X., Fu Y. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. Journal of Material Chemistry A. 2015;3(48):24237-24244. DOI: 10.1039/C5TA08406G
  • Zhao H., Yu H., Quan X., Chen S., Zhao H., Wang H. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation. RSC Advences. 2014;4(2):624-628. DOI: 10.1039/C3RA45776A
  • Li H., Wang L., Liu Y., Lei J., Zhang J. Mesoporous graphitic carbon nitride materials: synthesis and modifications. Research on Chemical Intermediates. 2016;42:3979-3998. DOI: 10.1007/s11164-015-2294-9
  • Lakhi K.S., Park D.-H., Al-Bahily K., Cha W., Viswanathan B., Choy J.-H., Vinu A. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews. 2017;46(1):72-101. DOI: 10.1039/C6CS00532B
  • Gaughran R.J., Plcard J.P., Kaufman J.V.R. Contribution to the chemistry of benzfuroxan and benzfurazan derivatives. Journal of American Chemical Society. 1954;76(8):2233-2236. DOI: 10.1021/ja01637a063
  • Tobiason F.L. Huestis L., Candler C., Pedersen S.E., Peters P. The polar nature of 2,1,3-benzoxadiazole, -benzothiadiazole, -benzoselenadiazole and derivatives as determined by their electric dipole moments. Jourmal of Heterocyclic Chemistry. 1973;10(5):773-778. DOI: 10.1002/jhet.5570100516
  • Murashima T., Fujita K-i., Ono K., Ogawa T., Uno H., Ono N. A new facet of the reaction of nitro heteroaromatic compounds with ethyl isocyanoacetate. Journal of the Chemical. Society - Perkin Transaction 1. 1996;(12):1403-1407. DOI: 10.1039/p19960001403
  • Uchiyama S., Santa T., Okiyama N., Azuma K., Imai K. Semi-empirical PM3 calculations predict the fluorescence quantum yields (9) of 4-monosubstituted benzofurazan compounds. Journal of the Chemical. Society, Perkin Transaction 2. 2000;(6):1199-1207. 10.1039/b000170h
  • Sergeev V.A., Pesin V.G., Kotikova N.M. Investigations of 2,1,3-thia- and selenadiazole s -LXVI. Amination of benzo-2,1,3-selenadiazole and its methyl derivatives with hydroxylamine sulfate in concentrated sulfuric acid. Chemistry of Heterocyclic Compounds. 1972;8(3):297-299.
  • 2016. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Gaussian, (2016).
  • Tomasi J., Mennucci B., Cammi R. Quantum mechanical continuum solvation models. Chemical Reviews. 2005;105(8):2999-3093. DOI: 10.1021/cr9904009
  • Zhurko A.G. Chemcraft - graphical program for visualization of quantum chemistry computations, (n.d.).
  • Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.-O., Schlögl R., Carlsson J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry. 2008;18(41):4893. DOI: 10.1039/b800274f
  • Yang J., Liang Y., Li K., Yang G., Wang K., Xu R., Xie X. One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocata-lytic H2 evolution. Applied Catalysis B: Environmental. 2020;262:118252. DOI: 10.1016/j .apcatb.2019.118252
  • Jin A., Liu X., Li M., Jia Y., Chen C., Chen X. One-pot ionothermal synthesized carbon nitride heterojunction nanorods for simultaneous photocatalytic reduction and oxidation reactions: synergistic effect and mechanism insight. ACS Sustainable Chemistry & Engineering. 2019;7(5):5122-5133. DOI: 10.1021/acssuschemeng .8b05969
  • Zhou Z., Wang J., Yu J., Shen Y., Li Y., Liu A., Liu S., Zhang Y. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. Journal of American Chemical Society. 2015;137(6):2179-2182. DOI: 10.1021/ja512179x
  • Xue J., Fujitsuka M., Majima T. The Role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution. Physical Chemistry Chemical Physics. 2019;21(5):2318-2324. DOI: 10.1039/C8CP06922K
  • Marci G., Garcia-Lopez E.I., Pomilla F.R., Palmisano L., Zaffora A., Santamaria M., Krivt-sov I., Ilkaeva M., Barbierikova Z., Brezova V. Photoelectrochemical and EPR features of polymeric c3n4 and o-modified c3n4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catalysis Today. 2019;328:21-28. DOI: 10.1016/J.CATTOD.2019.01.075
  • Li K., Zhang W. Creating graphitic carbon nitride based donor-n-acceptor-n-donor structured catalysts for highly photocatalytic hydrogen evolution. Small. 2018;14(12): 1-12. DOI: 10.1002/smll.201703599
  • Zhang J., Zhang M., Lin S., Fu X., Wang X. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. Journal of Catalysis. 2014;310:24-30. DOI: 10.1016/j .jcat.2013.01.008
  • Fan X., Zhang L., Wang M., Huang W., Zhou Y., Li M., Cheng R., Shi J. Constructing carbon-nitride-based copolymers via schiff base chemistry for visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental. 2016;182:68-73. DOI: 10.1016/j.apcatb.2015.09.006
  • Zheng D., Pang C., Liu Y., Wang X. Shell-engineering of hollow g-C3N4 nanospheres by copo-lymerization for photocatalytic hydrogen evolution. Chemical Communications. 2015;51(47): 1-5. DOI: 10.1039/C5CC03143E
  • Zhang J., Chen X., Takanabe K., Maeda K., Domen K., Epping J.D., Fu X., Antonieti M., Wang X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angewandte Chemie. International Edition. A 2010;49(2):441-444. DOI: 10.1002/anie.200903886
  • Yu Y., Yan W., Gao W., Li P., Wang X., Wu S., Song W., Ding K. Aromatic ring substituted g-c3n4 for enhanced photocatalytic hydrogen evolution. Journal of Material Chemistry A. 2017;5(33): 17199-17203. DOI: 10.1039/C7TA05744J
  • Zhang J., Zhang G., Chen X., Lin S., Möhlmann L., Dol^ga G., Lipner G., Antonietti M., Ble-chert S., Wang X. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angewandte Chemie - International Edition. 2012;51(13):3183-3187. DOI: 10.1002/anie .201106656
  • Kailasam K., Mesch M.B., Möhlmann L., Baar M., Blechert S., Schwarze M., Schröder M., Schomäcker R., Senker J., Thomas A. Donor-acceptor-type heptazine-based polymer networks for photocatalytic hydrogen evolution. Energy Technology. 2016;4(6):744-750. DOI: 10.1002/ente.201500478
  • Rahman M.Z., Ran J., Tang Y., Jaroniec M., Qiao S.Z. Surface activated carbon nitride nano-sheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Material Chemistry A. 2016;4(7):2445-2452. DOI: 10.1039/C5TA10194H
  • Zhang G., Wang X. A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution. Journal of Catalysis. 2013;307:246-253. DOI: 10.1016/j.jcat.2013.07.026
  • Xu Y., Mao N., Zhang C., Wang X., Zeng J., Chen Y., Wang F., Jiang J.X. Rational design of donor-n-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Applied Catalysis B: Environmental. 2018;228:1-9. DOI: 10.1016/j.apcatb.2018.01.073
  • Fan X., Zhang L., Cheng R., Wang M., Li M., Zhou Y., Shi J. Construction of conjugated intramolecular for donor-acceptor copolymers photocatalytic hydrogen evolution, (n.d.) 1-24.
  • Gao Q., Zhuang X., Hu S., Hu Z. Corrugation matters: structure models of single layer hepta-zine-based graphitic carbon nitride from first-principles studies. The Journal of Physical Chemistry C. 2020;124(8):4644-4651. DOI: 10.1021/acs.jpcc.0c00411
Еще
Статья научная