Cравнение моделей пен, составленных из регулярных и нерегулярных массивов открытых ячеек Гибсона-Эшби

Бесплатный доступ

Работа посвящена исследованию эффективных упругих свойств пенообразных или ячеистых материалов, моделируемых массивами открытых ячеек Гибсона-Эшби регулярной и нерегулярной структуры. В настоящее время существует множество работ, в которых представлены результаты исследований ячеистых материалов теоретическими, численными и экспериментальными методами. Однако в этих работах рассматривались либо регулярные решетки, либо отдельная ячейка, либо модели представительных объемов, не основанные на моделях Гибсона-Эшби. В данной статье помимо регулярной решетки численно исследовались и нерегулярные структуры. Описана математическая постановка задачи гомогенизации, основанная на эквивалентности по энергии пенообразного материала и однородной среды сравнения. Приведены постановки шести краевых задач, решения которых в совокупности позволяют определить полный набор эффективных модулей жесткости для пен с произвольными типами физической и геометрической анизотропий. Все этапы численного исследования были реализованы в конечно-элементном пакете ANSYS. Подробно описаны два алгоритма формирования твердотельных и конечно-элементных моделей нерегулярных решеток Гибсона-Эшби с малой и с большой пористостью. В качестве примера для поликарбонатных пен осуществлены численные расчеты в широком диапазоне пористости. Проведено сравнение значений эффективных упругих модулей для регулярных и нерегулярных решеток и для аналитической модели Гибсона-Эшби. Результаты вычислительных экспериментов показали, что модель Гибсона-Эшби достаточно хорошо описывает поведение высокопористых материалов (с пористостью более 75 %), но при меньших значениях пористости дает менее удовлетворительное предсказание. Отмечено, что при большом числе ячеек статистически регулярные и нерегулярные решетки дают близкие результаты для эффективных модулей. Однако для отдельных структур нерегулярных решеток, особенно при сильно различающихся ячейках в отдельных направлениях, эффективные модули могут иметь существенно отличающиеся значения, а эффективная гомогенная среда может иметь ярко выраженные анизотропные свойства. Эти эффекты обусловлены геометрической анизотропией и концентрацией напряжений в длинных соединительных балках и на стыках балок различных размеров в сильно нерегулярных решетках Гибсона-Эшби. Приведены примеры подобных решеток, и дан анализ разброса значений относительных модулей, характеризующий анизотропию таких структур.

Еще

Упругость, высокопористый материал, пена, открытая пористость, гомогенизация, эффективный модуль, модель гибсона-эшби, геометрическая анизотропия, метод конечных элементов, ansys

Короткий адрес: https://sciup.org/146282370

IDR: 146282370   |   DOI: 10.15593/perm.mech/2021.3.07

Список литературы Cравнение моделей пен, составленных из регулярных и нерегулярных массивов открытых ячеек Гибсона-Эшби

  • Cellular ceramics: structure, manufacturing, properties and applications. Scheffler M., Colombo P. (eds.). - John Wiley & Sons, 2005. doi: 10.1002/3527606696
  • Gibson L.J., Ashby M.F. Cellular solids: structure and properties. - Cambridge, UK: Cambridge University Press, 1997. - 510 p. doi: 10.1017/CBO9781139878326
  • Alabort E., Barba D., Reed R.C. Design of metallic bone by additive manufacturing // Scr. Mater. - 2019. - Vol. 164. - P. 110-114. doi: 10.1016/j.scriptamat.2019.01.022
  • Alsalla H., Hao L., Smith C. Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique // Mater. Sci. Eng. A. - 2016. - Vol. 669. - P. 1-6. doi: 10.1016/j.msea.2016.05.075
  • Study of the compression behaviour of Ti6Al4V trabecular structures produced by additive laser manufacturing / M. Benedetti, J. Klarin, F. Johansson, V. Fontanari, V. Luchin, G. Zappini, A. Molinari // Materials. - 2019. - Vol. 12, iss. 9. - Article 1471. doi: 10.3390/ma12091471
  • Bianchi G., Gianella S., Ortona A. Design and additive manufacturing of periodic ceramic architectures // J. Ceram. Sci. Tech. - 2017. - Vol. 08, iss. 01. - P. 59-66. doi: 10.4416/JCST2016-00088
  • Manufacturing and characterization of metal-supported solid oxide fuel cells / P. Blennow, J. Hjelm, T. Klemensø, S. Ramousse, A. Kromp, A. Leonide, A. Weber // J. Power Sources. - 2011. - Vol. 196, iss. 17. - P. 7117-7125. doi: 10.1016/j.jpowsour.2010.08.088
  • Fleck N.A., Deshpande V.S., Ashby M.F. Micro-architectured materials: past, present and future // Proc. Royal Soc. Lond. A. - 2010. - Vol. 466, iss. 2121. - P. 2495-2516. doi: 10.1098/rspa.2010.0215
  • Elastic behavior of multi-scale, open-cell foams / L. Maheo, P. Viot, D. Bernard, A. Chirazi, G. Ceglia, V. Schmitt, O. Mondain-Monval // Compos. Part B: Eng. - 2013. - Vol. 44, iss. 1. - P. 172-183. doi: 10.1016/j.compositesb.2012.06.006
  • Open-cellular copper structures fabricated by additive manufacturing using electron beam melting / D.A. Ramirez, L.E. Murr, S.J. Li, Y.X. Tian, E. Martinez, J.L. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, R.B. Wicker // Mater. Sci. Eng. A. - 2011. - Vol. 528, iss. 16-17. - P. 5379-5386. doi: 10.1016/j.msea.2011.03.053
  • Design and compressive behavior of controllable irregular porous scaffolds: based on Voronoi-tessellation and for additive manufacturing / G. Wang, L. Shen, J. Zhao, H. Liang, D. Xie, Z. Tian, C. Wang // ACS Biomater. Sci. Eng. - 2018. - Vol. 4, iss. 2. - P. 719-727. doi: 10.1021/acsbiomaterials.7b00916
  • Evaluation of topology-optimized lattice structures manufactured via selective laser melting / Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song, D. Wang // Mater. Des. - 2018. - Vol. 143. - P. 27-37. doi: 10.1016/j.matdes.2018.01.023
  • Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering / C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, W. Zhu // Mater. Sci. Eng. A. - 2015. - Vol. 628. - P. 238-246. doi: 10.1016/j.msea.2015.01.063
  • Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores / F. Zhu, G. Lu, D. Ruan, Z. Wang // Int. J. Prot. Struct. - 2010. - Vol. 1, iss. 4. - P. 507-541. doi: 10.1260/2041-4196.1.4.507
  • Overview and comparison of modelling methods for foams / A. Hössinger-Kalteis, M. Reiter, M. Jerabek, Z. Major // J. Cell. Plast. - First Published December 15, 2020. - P. 1-51. doi: 10.1177/0021955X20966329
  • Pan C., Han V., Lu J. Design and optimization of lattice structures: A review // Appl. Sci. - 2020. - Vol. 10. - Article 6374. doi: 10.3390/app10186374
  • Srivastava V., Srivastava R. On the polymeric foams: modeling and properties // J. Mater. Sci. - 2014. - Vol. 49. - P. 2681-2692. doi: 10.1007/s10853-013-7974-5
  • Gibson L.J., Ashby M.F. The mechanics of three-dimensional cellular materials // Proc. Royal Soc. Lond. A, 1982. - Vol. 382, iss. 1782. - P. 43-59. doi: 10.1098/rspa.1982.0088
  • Ashby M.F. The mechanical properties of cellular solids // Metall. Mater. Trans. A. - 1983. - Vol. 14, iss. 9. - P. 1755-1769. doi: 10.1007/BF02645546
  • Ashby M.F. The properties of foams and lattices // Phil. Trans. R. Soc. A. - 2006. - Vol. 364, iss. 1838. - P. 15-30. doi: 10.1098/rsta.2005.1678
  • Gibson L.J. Biomechanics of cellular solids // J. Biomech. - 2005. - Vol. 38. - P. 377-399. doi: 10.1016/j.jbiomech.2004.09.027
  • Avalle M., Scattina A. Mechanical properties and impact behavior of a microcellular structural foam // Lat. Am. J. Solids Struct. - 2014. - Vol. 11, iss. 2. - P. 200-222. DOI: S1679-78252014000200004
  • Uhlířová T., Pabst W. Conductivity and Young's modulus of porous metamaterials based on Gibson-Ashby cells // Scr. Mater. - 2019. - Vol. 159. - P. 1-4. doi: 10.1016/j.scriptamat.2018.09.005
  • Multiscale deformation of open cell aluminum foams / J. Zhou, Z. Gao, S. Allameh, E. Akpan, A.M. Cuitino, W.O. Soboyejo // Mech. Adv. Mater. Struct. - 2005. - Vol. 12, iss. 3. - P. 201-216. doi: 10.1080/15376490590928552
  • Andresen S., Bäger A., Hamm C. Eigenfrequency maximisation by using irregular lattice structures // J. Sound Vib. - 2020. - Vol. 465. - Article 115027. doi: 10.1016/j.jsv.2019.115027
  • Marvi-Mashhadi M., Lopes C.S., LLorca J. Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization // Int. J. Solids Struct. - 2018. - Vol. 146. - P. 154-166. doi: 10.1016/j.ijsolstr.2018.03.026
  • Marvi-Mashhadi M., Lopes C.S., LLorca J. Effect of anisotropy on the mechanical properties of polyurethane foams: An experimental and numerical study // Mech. Mater. - 2018. - Vol. 124. - P. 143-154. doi: 10.1016/j.mechmat.2018.06.006
  • Mukhopadhyay T., Adhikari S. Equivalent in-plane elastic properties of irregular honeycombs: An analytical approach // Int. J. Solids Struct. - 2016. - Vol. 91. - P. 169-184. doi: 10.1016/j.ijsolstr.2015.12.006
  • Mukhopadhyay T., Adhikari S. Effective in-plane elastic moduli of quasi-random spatially irregular hexagonal lattices // Int. J. Eng. Sci. - 2017. - Vol. 119. - P. 142-179. doi: 10.1016/j.ijengsci.2017.06.004
  • Pabst W., Uhlířová T., Gregorová E., Wiegmann A. Young’s modulus and thermal conductivity of closed-cell, open-cell and inverse ceramic foams - model-based predictions, cross-property predictions and numerical calculations // J. Eur. Ceram. Soc. - 2018. - Vol. 38. - P. 2570-2578. doi: 10.1016/j.jeurceramsoc.2018.01.019
  • Roberts A.P., Garboczi E.J. Elastic moduli of model random three-dimensional closed-cell cellular solids // Acta Mater. - 2001. - Vol. 49, iss. 2. - P. 189-197. doi: 10.1016/S1359-6454(00)00314-1
  • Finite element simulation of mechanical behaviour of nickel-based metallic foam structures / S.A. Kaoua, D. Dahmoun, A.E. Belhadj, M. Azzaz // J. Alloys Compd. - 2009. - Vol. 471, iss. 1-2. - P. 147-152. doi: 10.1016/j.jallcom.2008.03.069
  • Koudelka P., Jiroušek O., Valach J. Determination of mechanical properties of materials with complex inner structure using microstructural models // Mach Technol Mater. - 2011. - Vol. 1, iss. 3. - P. 39-42. http://mech-ing.com/journal/3-2011.html
  • 3-D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography / T. Dillard, F. N’guyen, E. Maire, L. Salvo, S. Forest, Y. Bienvenu [et al.] // Philos. Mag. - 2005. - Vol. 85, iss. 19. - P. 2147-2175. doi: 10.1080/14786430412331331916
  • Cristescu N.D., Craciun E.-M., Soós E. Mechanics of elastic composites. - CRC Press, 2003. doi: 10.1201/9780203502815
  • Kachanov M., Sevostianov I. Micromechanics of materials, with applications / Serie: Solid Mechanics and its Applications. - Vol. 249. - Springer Int. Publ. AG, 2018. doi: 10.1007/978-3-319-76204-3
  • Mills N.J. Finite element models for the viscoelasticity of open-cell polyurethane foam // Cell. Polym. - 2006. - Vol. 25, iss. 5. - P. 293-316. doi: 10.1177/026248930602500502
  • Ortona A., Rezaei E. Modeling the properties of cellular ceramics: From foams to lattices and back to foams // Adv. Sci. Tech. - 2014. - Vol. 91. - P. 70-78. doi: 10.4028/www.scientific.net/ast.91.70
  • Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling / R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood // Acta Biomater. - 2010. - Vol. 6, iss. 6. - P. 2342-2351. doi: 10.1016/j.actbio.2009.11.032
  • Zhu H.X., Hobdell J.R., Windle A.H. Effects of cell irregularity on the elastic properties of open-cell foams // Acta Mater. - 2000. - Vol. 48, iss. 20. - P. 4893-4900. doi: 10.1016/S1359-6454(00)00282-2
  • Düster A., Sehlhorst H.G., Rank E. Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method // Comput. Mech. - 2012. - Vol. 50. - P. 413-431. doi: 10.1007/s00466-012-0681-2
  • Parvizian J., Düster A., Rank E. Finite cell method - h- and p-extension for embedded domain problems in solid mechanics // Comput. Mech. - 2007. - Vol. 41. - P. 121-133. doi: 10.1007/s00466-007-0173-y
  • Krishnan A. The interfacial failure of bonded materials and composites: Dissertation. - Nashville, Tennessee: Vanderbilt University, 2010. - URL: http://hdl.handle.net/1803/14970
  • Наседкин А.В., Наседкина А.А., Нассар М.Э. Гомогенизация пористых пьезокомпозитов с экстремальными свойствами на границах пор методом эффективных модулей // Изв. РАН. МТТ. - 2020. - № 6. - С. 82-92. doi: 10.31857/S057232992005013X
  • Дерффель К. Статистика в аналитической химии. - М.: Мир, 1994. - 268 с.
  • Roberts A.P., Garboczi, E.J. Elastic properties of model porous ceramics // J. Amer. Ceram. Soc. - 2000. - Vol. 83, iss. 12. - P. 3044-3048. doi: 10.1111/j.1151-2916.2000.tb01680.x
  • Авдеенко А.М., Крупин Ю.А., Пименова Н.А Ротационные моды деформации пористых структур // Вестник ПНИПУ. Механика. - 2014. - № 3. - С. 5-16. doi: 10.15593/perm.mech/2014.3.01
  • Pia G., Delogu F. Mechanical properties of nanoporous Au: From empirical evidence to phenomenological modeling // Metals. - 2015. - Vol. 5, iss. 3. - P. 1665-1694. doi: 10.3390/met5031665
  • Наседкин А.В., Корниевский А.С. Конечно-элементное моделирование эффективных свойств анизотропных упругих материалов со случайной наноразмерной пористостью // Вычислительная механика сплошных сред. - 2017. - Т. 10, № 4. - С. 375-387. doi: 10.7242/1999-6691/2017.10.4.29
  • Nasedkin A.V., Kornievsky A.S. Finite element homogenization of elastic materials with open porosity at different scale levels // AIP Conf. Proc. -2018. - Vol. 2046, iss. 1. - Article 020064. doi: 10.1063/1.5081584
  • Nasedkin A.V., Kornievsky A.S. Numerical investigation of effective moduli of porous elastic material with surface stresses for various structures of porous cells // Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Advanced Structured Materials. - Vol. 109. - M.A. Sumbatyan (Ed.) - Springer, Singapore, 2019. - Ch. 15. - P. 217-228. doi: 10.1007/978-3-030-17470-5_15
Еще
Статья научная