Current state of the research on optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interferometric receivers

Автор: Mikitchuk A., Girshova E.I., Nikolaev V.

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 4 т.47, 2023 года.

Бесплатный доступ

The work is devoted to an overview of the current state of optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interference receivers, its scope, technologies and materials used, the advantages and disadvantages of different methods and the prospects for the development of the industry.

Optoacoustics, ultrasonic devices, optical fiber, optoacoustic reciever, optoacoustic transducer

Короткий адрес: https://sciup.org/140301827

IDR: 140301827   |   DOI: 10.18287/2412-6179-CO-1224

Список литературы Current state of the research on optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interferometric receivers

  • Czichos H. Technical diagnostics: principles, methods, and applications. NCSLI Measure 2014; 9(2): 32-40.
  • Worden K, et al. The fundamental axioms of structural health monitoring. Philos Trans Royal Soc A 2007; 463(2082): 1639-1664.
  • Sposito G, et al. A review of non-destructive techniques for the detection of creep damage in power plant steels. NDT E Int 2010; 43(7): 555-567.
  • Hu C, Yu Z, Wang A. An all fiber-optic multi-parameter structure health monitoring system. Opt Express 2016; 24(18): 20287-20296.
  • Li W, Lan Z, Hu N, Deng M. Modeling and simulation of backward combined harmonic generation induced by oneway mixing of longitudinal ultrasonic guided waves in a circular pipe. Ultrasonics 2021; 113: 106356. DOI: 10.1016/j.ultras.2021.106356.
  • Kim S, Choi C, Cha Y, et al. The efficacy of convenient cleaning methods applicable for customized abutments: an in vitro study. BMC Oral Health 2021; 21: 78. DOI: 10.1186/s12903-021-01436-z.
  • Biagi E, Margheri F, Menichelli D. Efficient laserultrasound generation by using heavily absorbing films as targets. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48(6): 1669-1679.
  • Yang H, et al. Characterization of a broadband all-optical ultrasound transducer - from optical and acoustical properties to imaging. Appl Phys Lett 2007; 91: 073507.
  • Yang T. Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Opt Laser Technol 2018; 101: 468-478.
  • Lyamshev LM. Optoacoustic sources of sound. Sov Phys Usp 1981; 24: 977-995.
  • Naugolnykh KA, Ostrovsky LA. Nonlinear wave processes in acoustics. Cambridge: Cambridge University Press; 1998.
  • Akhmanov SA, Rudenko VZh. Parametric laser emitter of ultrasound [In Russian]. Jurnal Tehnicheskoi Fiziki 1975; 1(15: 725-728.
  • Martellucci S. Analytical laser spectroscopy. Springer Science & Business Media; 2012.
  • Stewart RB, Diebold GJ. Radiation - induced thermal noise in optoacoustic detection cells. J Appl Phys 1984; 56: 1992-1996. DOI: 10.1063/1.334233.
  • Werner JPF, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC. Structure-based mutagenesis of phycobiliprotein smURFP for optoa-coustic imaging. ACS Chem Biol 2019; 14: 1896-1903.
  • Yoshida S, Adhikari S, Gomi K, Shrestha R, Huggett D, Miyasaka C, Park I. Opto-acoustic technique to evaluate adhesion strength of thin-film systems. AIP Advances 2012; 2: 022126. DOI: 10.1063/1.4719698.
  • Kostli KP, Frauchiger D, Niederhauser JJ, Paltauf G, Weber HP, Frenz M. Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J Sel Top Quantum Electron 2001; 7(6): 918-923. DOI: 10.1109/2944.983294.
  • Wu N, et al. Fiber optic ultrasound transmitters and their applications. Measurement 2016; 79: 164-171.
  • Nishijima Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt Express 2012; 20(10): 11466-11477.
  • Tian Y, et al. Numerical simulation of gold nanostructure absorption efficiency for fiber-optic optoacoustic generation. Prog Electromagn Res Lett 2013; 42: 209-223.
  • Gaponenko SV. Introduction to nanophotonics. Cambridge: Cambridge University Press; 2010.
  • Baranov AV, et al. Technique of physical experiment in systems with reduced dimension [In Russian]. Saint-Petersburg: "SPbGU ITMO" Publisher; 2009.
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2006; 16: 1685-1706.
  • Lakowicz JR, et al. Plasmon-controlled fluorescence: a new detection technology. Proc SPIE 2006; 6099: 609909.
  • Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 2007; 111: 3806-3819.
  • Sekhon JS, Verma SS. Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 2011; 6: 311-317.
  • Hutter TS, Elliott R, Mahajan S. Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants. Nanotechnology 2013; 24: 035201.
  • Rivero PJ, Goicoechea J, Arregui FJ. Localized surface plasmon resonance for optical fiber-sensing applications. In Book: Barbillon G, ed. Nanoplasmonics - Fundamentals and applications. IntechOpen; 2017: 399-429.
  • Singh CD, Shibata Y, Ogita M. A theoretical study of tapered, porous clad optical fibers for detection of gases. Sens Actuators B Chem 2003; 92: 44-48.
  • Zhou J, et al. Water temperature measurement using а novel fiber optic ultrasound transducer system. 2015 IEEE Int Conf on Information and Automation 2015: 2316-2319.
  • Yang L. Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging. Photoacoustics 2022; 28: 100421.
  • Bi S. Ultrasonic transmission from fiber optic generators on steel plate. Proc SPIE 2016; 9804: 98040Q.
  • Du C. All-optical optoacoustic sensors for steel rebar corrosion monitoring. Sensors 2018; 18(5): 1353-1365.
  • Zhou J, et al. High temperature monitoring using а novel fiber optic ultrasonic sensing system. Proc SPIE 2018; 10639: 1063910.
  • Jensen JA. Medical ultrasound imaging. Prog Biophys Mol Biol 2007; 93: 153-165.
  • Nelson TR, Pretorius TH. Three-dimensional ultrasound imaging. Ultrasound Med Biol 1998; 24(9): 1243-1270.
  • von Haxthausen F, Böttger S, Wulff D, et al. Medical robotics for ultrasound imaging: Current systems and future trends. Curr Robot Rep 2021; 2: 55-71.
  • Yu Y, Safari A, Niu X, Drinkwater B, Horoshenkov KV. Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review. Appl Acoust 2021; 183: 108282.
  • Bombarda D, Vitetta GM, Ferrante G. Rail diagnostics based on ultrasonic guided waves: An overview. Appl Sci 2021; 11(3): 1071.
  • Liu S, Sun Y, Jiang X, et al. A review of wire rope detection methods, sensors and signal processing techniques. J Nondestr Eval 2020; 39: 85.
  • Mangalgiri PD. Corrosion issues in structural health monitoring of aircraft. ISSS J Micro Smart Syst 2019; 8: 49-78.
  • Stras B, Conrad C, Walter B. Production integrated nondestructive testing of composite materials and material compounds - An overview. IOP Conference Series: Materials Science and Engineering 2017; 181: 12017.
  • Vavilov VP. Thermal nondestructive testing of materials and products: a review. Russ J Nondestruct Test 2017; 53: 707-730.
  • Toh N, Akagi T, Kasahara S, et al. Evolution of echocar-diography in adult congenital heart disease: from pulsed-wave Doppler to fusion imaging. J Echocardiogr 2021; 19: 205-211.
  • Takaya Y, Ito H. New horizon of fusion imaging using echocardiography: its progress in the diagnosis and treatment of cardiovascular disease. J Echocardiogr 2020; 18: 9-15.
  • Meola M, Ibeas J, Lasalle G, Petrucci I. Basics for performing a high-quality color Doppler sonography of the vascular access. J Vasc Access 2021; 22(1): 18-31.
  • Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WIREs Nano-med Nanobiotechnol 2017; 5: 329-345.
  • Dasgupta A, Liu M, Ojha T, Storm G, Kiessling F, Lammers T. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. Drug Discovery Today: Technologies 2016; 20: 41-48.
  • Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O, Glide C. Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med Phys 2007; 34: 773-785.
  • Mahmud M, Islam MS, Ahmed A, Younis M, Choa F-S. Cross-medium optoacoustic communications: challenges, and state of the art. Sensors 2022; 22(11): 4224. DOI: 10.3390/s22114224.
  • Ji Z, Fu Y, Li J, Zhao Z, Mai W. Optoacoustic communication from the air to underwater based on low-cost passive relays. in IEEE Commun Mag 2021; 59(1): 140-143. DOI: 10.1109/MCOM.001.2000607.
  • Sullenberger RM, Kaushik S, Wynn CM. Optoacoustic communications: delivering audible signals via absorption of light by atmospheric H2O. Opt Lett 2019; 44: 622-625.
  • Schmid, T. Optoacoustic spectroscopy for process analysis. Anal Bioanal Chem 2006; 384: 1071-1086. DOI: 10.1007/s00216-005-3281-6.
  • Holthoff EL, Heaps DA, Pellegrino PM. Development of a MEMS-scale optoacoustic chemical sensor using a quantum cascade laser. IEEE Sensors J 2010; 10(3): 572577. DOI: 10.1109/JSEN.2009.2038665.
  • Mothe G, Castro M, Sthel M, Lima G, Brasil L, Campos L, Rocha A, Vargas H. Detection of greenhouse gas precursors from diesel engines using electrochemical and optoacoustic sensors. Sensors 2010; 10(11): 9726-9741. DOI: 10.3390/s101109726.
  • Elia A, Di Franco C, Lugara PM, Scamarcio G. Optoa-coustic spectroscopy with quantum cascade lasers for trace gas detection. Sensors 2006; 6(10): 1411-1419. DOI: 10.3390/s6101411.
  • Zharov VP, Galanzha EI MD, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV. Optoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 2007; 12(5): 051503.
  • Johnson S, Proctor M, Bluth E, Smetherman D, Baumgarten K, Troxclair L, Bienvenu M. Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes. J Ultrasound Med 2013; 32: 1799-1804. DOI: 10.7863/ultra.32.10.1799.
  • Lazarotto JS, Júnior EPM, Medeiros RC, et al. Sanitary sewage disinfection with ultraviolet radiation and ultrasound. Int J Environ Sci Technol 2021; 19, 11531-11538. DOI: 10.1007/s13762-021-03764-7.
  • Khaire RA, Thorat BN, Gogate PR. Applications of ultrasound for food preservation and disinfection: A critical review. J Food Process Preserv 2021; 46(10): e16091. DOI: 10.1111/jfpp.16091.
  • Jatzwauk L, Schöne H, Pietsch H. How to improve instrument disinfection by ultrasound. J Hosp Infect 2001; 48(A): S80-S83. DOI: 10.1016/S0195-6701(01)90019-2.
  • Winkler AM, Maslov K, Wang LV. Noise-equivalent sensitivity of photoacoustics. J Biomed Opt 2013; 18(9): 97003.
  • Kim KH, et al. Air-coupled ultrasound detection using capillary-based optical ring resonators. Sci Rep 2017; 7: 109.
  • Wissmeyer G, et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci Appl 2018; 7: 53.
  • Liang Y. Fiber-laser-based ultrasound sensor for photoa-coustic imaging. Sci Rep 2017; 7: 40849.
  • Zhou J. High temperature monitoring using a novel fiber optic ultrasonic sensing system. Proc SPIE 2018; 10639: 1063910.
  • Dong B, Sun C, Zhang H. Optical detection of ultrasound in photoacoustic imaging. IEEE Trans Biomed Eng 2017; 64(1): 4-15.
  • Zhou QF, et al. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progr. in materials sci. - 2011 - Vol. 56 -P. 139-174.
  • Li X, et al. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans Ultrason Ferroelectr Freq Control 2011; 58: 2281-2288.
  • Niederhauser JJ, et al. Transparent ITO coated PVDF transducer for optoacoustic depth profiling. Opt Commun 2005; 253: 401-406.
  • Rousseau G, et al. Non-contact biomedical photoacoustic and ultrasound imaging. J Biomed Opt 2012; 17: 61217.
  • Nuster R, et al. Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography. Opt Lett 2011; 36: 981-983.
  • Beard PC, et al. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 1575-1582.
  • Beard PC, Mills TN. An optical detection system for biomedical photoacoustic imaging. Proc SPIE 2000; 3916: 100-109.
  • Grun H, et al. Polymer fiber detectors for photoacoustic imaging. Proc SPIE 2010; 7564: 75640M.
  • Rosenthal A, et al. Wideband optical sensing using pulse interferometry. Opt Express 2012; 20: 19016-19029.
  • Sheaff C, Ashkenazi S. A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy. Proc Ultrasonics Symp 2010: 2135-2138.
  • Govindan, V. Bragg waveguide ultrasound detectors / V. Govindan, S. Ashkenazi // IEEE Trans. on ultrason. ferroelectr. and freq. contr. - 2012 - Vol. 59 - P. 2304-2311.
  • Chao CY, et al. High-frequency ultrasound sensors using polymer microring resonators. IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54: 957-965.
  • Ling T, et al. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt Express 2011; 19: 861-869.
  • Scruby CB, Drain LE. Laser ultrasonics techniques and applications. New York: CRC Press; 1990.
  • Gusev V, Karabutov A. Laser optoacoustics. NASA STI/Recon Technical Report A 1991; 93: 16842.
  • Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Ivanov KA, Pozina G, Kozadaev KV, Egorov AYu, Kaliteevski MA. Proposal for a photoacoustic ultrasonic generator based on Tamm plasmon structures. Opt Express 2020; 28: 26161-26169. DOI: 10.1364/0E.400639.
  • Ling T, et al. Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt Express 2011; 19: 861-869.
  • Zhigarkov VS, Yusupov VI. Impulse pressure in laser printing with gel microdroplets. Opt Laser Technol 2021; 137: 106806. DOI: 10.1016/j.optlastec.2020.106806.
  • Kozhushko VV, Hess P. Nondestructive evaluation of microcracks by laser-induced focused ultrasound. Appl Phys Lett 2007; 91: 224107.
  • Baac HW, et al. Photoacoustic concave transmitter for generating high frequency focused ultrasound. Proc SPIE 2010; 7564: 116-121.
  • Passler K, et al. Laser-generation of ultrasonic X-waves using axicon transducers. Appl Phys Lett 2009; 94: 64108.
  • Baac HW, et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci Rep 2012; 2: 989-997.
  • Chan W, Hies T, Ohl CD. Laser-generated focused ultrasound for arbitrary waveforms. Appl Phys Lett 2016; 109: 174102.
  • Hou Y, et al. Improvements in optical generation of high-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54: 682-686.
  • Lee SH. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation. Appl Phys Lett 2012; 101: 241909.
  • Hou Y, et al. Optical generation of high frequency ultrasound using two-dimensional gold nanostructure. Appl Phys Lett 2006; 89: 93901.
  • Zou X, et. al. Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism. Appl Opt 2013; 52(25): 6239-6244.
  • Hsieh BY, et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film. Appl Phys Lett 2015; 106: 21902.
  • Chang WY, et al. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. Appl Phys Lett 2015; 107: 161903.
  • Biagi E, et al. Fiber optic broadband ultrasonic probe. 2009 IEEE Int Ultrasonics Symp 2009: 363-366.
  • Colchester RJ, et al. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl Phys Lett 2014; 104: 173502.
  • Colchester RJ, et al. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomed Opt Express 2015; 6: 1502-1511.
  • Wu N, et. al. Fiber optics photoacoustic generation using gold nanoparticles as target. Proc SPIE 2011; 7981: 798118.
  • Wu N, et al. Study of the compact fiber optic photoacoustic ultrasonic transducer. Proc SPIE 2012; 8345: 83453Z.
  • Tian Y. Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material. J Comput Acoust 2013; 21: 1350002.
  • Tian Y, et. al. Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam. Opt Eng 2013; 52(6): 65005.
  • Wu N, et al. Fiber optic photoacoustic ultrasound generator based on gold nanocomposite. Proc SPIE 2013; 8694: 86940Q.
  • Zou X, et al. Broadband miniature fiber optic ultrasound generator. Opt Express 2014; 22(15): 18119-18127.
  • Lee J, Zaigham SB, Paeng D-G. Shock wave characterization using different diameters of an optoacoustic carbon nanotube composite transducer. Appl Sci 2022; 12: 7300. DOI: 10.3390/app12147300.
  • Shi L, Jiang Y, Fernandez FR, et al. Non-genetic photoa-coustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light Sci Appl 2021; 10: 143. DOI: 10.1038/s41377-021-00580-z.
  • Jiang Y. High precision optoacoustic neural modulation. Doctoral dissertation. Boston University; 2021.
  • Du X, Li J, Niu G, et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat Commun 2021; 12: 3348. DOI: 10.1038/s41467-021-23788-4.
  • Hu X, Ma Y, Wan Q, Ying K-N, Dai L-N, Hu Z, Chen F, Guan F, Ni C, Guo LB. Laser ultrasonic improvement and its application in defect detection based on the composite coating method. Appl Opt 2022; 61: 4145-4152.
  • Girshova EI, Mikitchuk EP, Belonovskii AV, et al. An optoacoustic ultrasound generator based on a tamm plas-mon and organic active layer structure. Tech Phys Lett 2021; 47: 336-340. DOI: 10.1134/S1063785021040076.
  • Liu S, Kim H, Huang W, Chang W-Y, Jiang X, Ryu JE. Multiscale and multiphysics FEA simulation and materials optimization for laser ultrasound transducers. Mater Today Commun 2022; 31: 10359. DOI: 10.1016/j.mtcomm.2022.103599.
  • Girshova EI, Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA. Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors. Computer Optics 2022; 46(4): 561-566. DOI: 10.18287/2412-6179-CO-1128.
  • Weiland T. RF & microwave simulators - from component to system design. 33rd European Microwave Conf Proc 2003; 2: 591-596.
  • Moreno F, Saiz JM, Gonzalez F. Light scattering by particles on substrates. theory and experiments-nanostructure science and technology. New York: Springer; 2007: 305-340.
  • Saleh BEA, Teich MC. Fundamentals of Photonics. John Wiley & Sons Inc; 1991.
  • Ghaforyan H, Ebrahimzadeh M, Bilankohi SM. Study of the optical properties of nanoparticles using Mie theory. World Appl Program 2015; 5(4): 79-82.
  • Fabelinskii IL. Molecular scattering of light. New York: Plenum Press; 1968.
  • Lindell IV, et al. Exact-image theory formulation. J Opt Soc Am A 1991; 8: 472-476.
  • Dmitriev A. Nanoplasmonic sensors. New York: Springer; 2012.
  • Sonnichsen C, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 2002; 88(4): 077402.
  • Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing-A review. Anal Chim Acta 2011; 706: 8-24.
  • Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58: 267-297.
  • Klimov V. Nanoplasmonics. New York: Jenny Stanford Publishing; 2014.
  • Novotny L, Hecht B. Principles of nanooptics. New York: Cambridge University Press; 2006.
  • Malinsky MD, et al. Nanosphere lithography: effect of substrate on the localized surface Plasmon resonance spectrum of silver nanoparticles. J Phys Chem 2001; 105(12): 2343-2350.
  • Yurkin MA, Huntemann M. Rigorous and fast discrete dipole approximation for particles near a plane interface. J Phys Chem 2015; 119(52): 29088-29094.
  • Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 2010; 5: 85-97.
  • Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: A review. J Quant Spectrosc Radiat Transfer 1996; 55: 535-575.
  • Kurushin AA, Plasticov AN. Designing microwave devices in the environment CST Microwave Studio [In Russian]. Moscow: MPEI Publishing House, 2010: 47-73.
  • Borovkov AI, et al. Computer engineering [In Russian]. Saint-Petersburg: SPbTU Publisher; 2012.
  • Borovkov AI, et al. Modern engineering education [In Russian]. Saint-Petersburg: SPbTU Publisher; 2012.
  • Horikoshi K, Kato T. Theoretical study of the interparticle interaction of nanoparticles randomly dispersed on a substrate. J Appl Phys 2015; 117: 23117.
  • Inan US, Marshall RA. Numerical electromagnetics: The FDTD method. Cambridge: Cambridge University Press; 2011: 316-326.
  • Krietenstein B, et al. The perfect boundary approximation technique facing the challenge of high precision field computation. 19th Int Linear Accelerator Conf 1998: 860-862.
  • Fritzen F, Bohlke T. Influence of the type of boundary conditions on the numerical properties of unit cell problems. Tech Mech 2010; 30(4): 354-363.
  • Diebold S, et al. Modelling of transistor feeding structures based on electro-magnetic field simulations. 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits 2012: 1-3.
  • Sullivan DM. Electromagnetic simulation using the FDTD method. New York: Wiley-IEEE Press; 2013.
  • Thoma P, Weiland T. A subgridding method in combination with the finite integration technique. 1995 25th European Microwave Conf 1995; 2: 1-4.
  • Tian Y, et al. Numerical simulation of fiber-optic photoa-coustic generator using nanocomposite material. J Comput Acoust 2013; 21(2): 1350002.
  • Kurushin AA, Plastikov AN. Electrodynamics for CAD users [In Russian]. Moscow: "MEI" Publisher; 2011.
  • Clemens M, Weiland T. Discrete electromagnetism with the finite integration technique. Progress in Electromagnetics Research 2001; 32: 65-87.
  • Bankov SE, Kurushin AA. Electrodynamics and microwave technology for CAD users [In Russian]. Moscow: "IRE AN" Publisher; 2008.
  • Pozar DM. Microwave engineering. 4th ed. Hoboken: John Wiley & Sons; 2012.
  • Clemens M, Feigh S, Weiland T. Geometric multigrid algorithms using the conformal finite integration technique. IEEE Trans Magn 2004; 40(2): 1065-1078.
  • Bondeson A, Rylander T, Ingelstron P. Texts in applied mathematics - Computational electromagnetics. New York: Springer; 2005p.
  • Podoltsev AD, Kucherjavaya IN. Multiphysics simulation of electrical devices [In Russian]. Tehnichna Elektrodinamika 2015; 2: 3-15.
  • Hameyer K, et al. The classification of coupled field problems. IEEE Trans Magn 1999; 35(3): 1618-1621.
  • Bezzubceva MM, Volkov VS. Analytical review of application software packages for modeling energy processes in consumer energy systems of the agro-industrial complex [In Russian]. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental'nykh Issledovaniy 2015; 6(2): 191-195.
  • Hoffmann J, et al. Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas. Proc SPIE 2009; 7390: 73900J.
  • Sarid D, Challener W. Modern introduction to surface plasmons: theory, mathematica modeling and applications. New York: Cambridge University Press; 2010.
  • Wolfe C. Multiphysics: the future of simulation. ANSYS Advantage 2014; 8(2): 6-10.
  • Paulsen M, et al. Simulation methods for multiperiodic and aperiodic nanostructured dielectric waveguides. Opt Quantum Electron 2017; 49(107): 106-120.
  • Al-Mufti WM, Hashim U, Adam T. The state of the arts: simulation of nanostructures using COMSOL Multiphysics. Adv Mater Res 2013; 832: 206-211.
  • Zhangyang X, et al. The effect of geometry parameters on light harvesting performance of GaN nanostructure ar-rays-a numerical investigation and simulation. Mater Res Express 2019; 7(1): 15009.
  • Seth M, Ewusi-Annan E, Jensen L. Controlling the non-resonant chemical mechanism of SERS using a molecular photoswitch. Phys Chem Chem Phys 2009; 11: 74247429.
  • Li JF, et al. Shelled-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010; 464: 392-395.
  • Sidorov AN, et al. A surface-enhanced Raman spectros-copy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth. Carbon 2012; 50(2): 699-705.
  • Herrera GM, Padilla AC, Hernandez-Rivera SP. Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nano-materials 2013; 3(1): 158-172.
  • Mikitchuk AP, Kozadaev KV. Photostability of fiberoptic photoacoustic transducer based on silver nanoparti-cle layer. Semiconductors 2020; 54(14): 1836-1839. DOI: 10.1134/S1063782620140195.
  • Goncharov VK, Kozadaev KV, Mikitchuk AP, Puzyrev MV. Synthesis, structural and spectral properties of surface noble metal nanostructures for fiber-optic photoa-coustic generation. Semiconductors 2019; 53(14): 19501953. DOI: 10.1134/S1063782619140070.
  • Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Kaliteevski MA. Prospects for using organic and metal-polymer materials in optoacoustic generators of ultrasound. Bulletin of the Russian Academy of Sciences: Physics 2022; 86(7): 833-836. DOI: 10.3103/S1062873822070140.
  • Mikitchuk AP, Kozadaev KV. Photoacoustic generation with surface noble metal nanostructures. Semiconductors 2018; 52(14): 1839-1842. DOI: 10.1134/S106378261814018X.
  • Nishijima Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt Express 2012; 20(10): 11466-11477.
  • Pozar DM. Microwave engineering. John Wiley & Sons; 2012.
  • Fritzen F, Bohlke T. Influence of the type of boundary conditions on the numerical properties of unit cell problems. Tech Mech 2010; 30(4): 354-363.
  • Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM. Hybrid metal polymer as a potential active medium of an optoacoustic generator. Tech Phys Lett 2022; 48(2): 32-35. DOI: 10.21883/TPL.2022.02.52842.18948.
  • Kreibig U, Vollmer M. Optical properties of metal clusters. Springer-Verlag; 1995.
  • Mikitchuk AP, Girshova EI, Kugeiko MM. Thermophysi-cal and mechanical properties of active membranes for photoacoustic generators of forced acoustic oscillations. Tech Phys Lett 2022; 48(4): 50-53. DOI: 10.21883/TPL.2022.04.53171.19089.
  • Mikitchuk A, Kozadaev K. Comprehensive theoretical study of optical, thermophysical and acoustic properties of surface nanostructures with metallic nanoparticles for fiber-optic photoacoustic ultrasound transducers. Przeglad Elektrotechniczny 2020; 3: 129-137.
Еще
Статья научная