Decrypting the Effects of Starvation and Excess of Nitrogen and Phosphorus on Nostoc calcicola

Автор: Prabha Tiwari, Prabhat Kumar Sharma

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.17, 2021 года.

Бесплатный доступ

The physiological and biochemical behaviour of marine cyanobacterium (Nostoc calcicola) grown under starved and double the strength of nitrogen (N) and phosphorus (P) was studied. Culture grew in an Artificial Sea Nutrient III culture medium with five different concentrations of N and P, i.e., double the concentration of N (DN) or P (DP), starvation of nitrogen, (-)N and phosphorus, (-)P and combine deprivation of both nitrogen and phosphorus, (-)NP along with control. Growth rate and photosynthetic efficiency decreased under P starved condition alone, and combined starvation of N and P. Oxidative, and physiological stress was evidenced by increased ROS, MDA, and proline content level under starved conditions. Elevated activity of Ascorbic acid, SOD, CAT, and APX were also detected. In contrast, an increase in the growth rate and Fv/Fm ratio, along with low oxidative, osmotic stress, and antioxidant activity, was observed under double the strength of nitrogen and phosphorous. Our work demonstrated that P starvation alone and combine starvation of N and P affected the growth of N. calcicola, maybe due to oxidative damage (increased lipid peroxidation and carbonyl content). In contrast to nutrient-starved conditions, the growth rate of N. calcicola enhanced under DN and DP, followed by (-) N.

Еще

Antioxidant, Fv/Fm, lipid peroxidation, Proline, ROS

Короткий адрес: https://sciup.org/143173884

IDR: 143173884

Список литературы Decrypting the Effects of Starvation and Excess of Nitrogen and Phosphorus on Nostoc calcicola

  • Aebi, H. (1984) Catalase in vitro. In Methods in enzymology. 105, 121-126, Academic Press.
  • Alves, S., Torres V., Fernandes, S., Marques dos Santos, A., and de Souza, S. (2016) Soluble fractions and kinetics parameters of nitrate and ammonium uptake in sunflower (“Neon” Hybrid). Rev. CiÊncia Agron. 47, 13–21.
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant soil, 39(1), 205-207.
  • Belisle, B.S; Steffen, M.M; Pound, H.L; Watson, S.B; Debruyn, J.M; Bourbonniere, R.A; Boyer, G.L; Wilhelm S.W. (2016) Urea in lake Erie: Organic nutrient sources as potential important drivers of phytoplankton biomass. Journal of Great Lakes Residue, 42, 599-607.
  • Billi, D., & Caiola, M. G. (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol, 133(4), 563-571.
  • Bulgakov, G., & Levich, P. (1999) The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure. Archiv für hydrobiologie, 3-22.
  • Chevalier, P., Proulx, D., Lessard, P., Vincent, W. F., & De la Noüe, J. (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol, 12(2), 105-112.
  • Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017) Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnology for biofuels. 10(1), 60.
  • Collén, N., Camitz, A., Hancock, D., Viola, R., & Pedersén, M. (2004) Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in Gracilaria tenuistipitata (rhodophyta). Journal of phycology, 40(2), 305-314.
  • Costa, V., Cozza, L., Oliveira, L., and Magagnin, G. (2001) Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J. Microbiol. Biotechnol. 17, 439–442.
  • Dar, S. H., Kumawat, D. M., Singh, N., & Wani, K. A. (2011) Sewage Treatment Potential of Water Hyacinth (Eichhornia crassipes). Int. Res. J. Environ. Sci, 5(4), 377.
  • Degerholm, J., Gundersen, K., Bergman, B and Soderback, E. (2006). Phosphorus-limited growth dynamics in twoBaltic Sea cyanobacteria, Nodularia sp. And Aphanizomenon sp. FEMS Microbiol Ecol, 58(3):323-32.
  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot, 32(1), 93-101.
  • Drath, M., Kloft, N., Batschauer, A., Marin, K., Novak, J., and Forchhammer, K. (2008) Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 147, 206–215.
  • Felisberto, A., Leandrini, A., & Rodrigues, L. (2011) Effects of nutrients enrichment on algal communities: an experimental in mesocosms approach. Acta Limnologica Brasiliensia, 23(2), 128-137.
  • Fernandez, E., and Galvan, A. (2007) Inorganic nitrogen assimilation in Chlamydomonas. J. Exp. Bot. 58, 2279–2287.
  • Fitzgerald GP and Nelson C (1966) Extractive and enzymatic analysis for limiting or surplus phosphorus in algae. J Appl Phycol, 2, 32-37.
  • Gibbon, C. B., Haiyun, R. E. N., & Staiger, J. C. (1997). Characterization of maize (Zea mays) pollen profilin function in vitro and in live cells. Biochem. J., 327(3), 909-915.
  • Gill, S and Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48 (12), 909–30.
  • Gulzar, N., Mir, M; & Hamid, S. (2019) Effect of Nitrogen and Phosphorus on the Growth and Redox Homeostasis of Salt-stressed Mustard Plants. Asian J. Plant Sci., 18 (2), 52-59.
  • Guo, T. R., Yao, P. C., Zhang, Z. D., Wang, J. J., & Mei, W. (2012) Involvement of antioxidative defense system in rice seedlings exposed to aluminum oxicity and phosphorus deficiency. Rice Sci, 19(3), 207-212.
  • Hamid, S., & Sibi, G. (2018) Antioxidant System Response in Green Microalga Chlorococcopsis minuta Against Nutrient Stress in Growth Media. Asian J. Biol. Sci, 11, 210-216.
  • Hammond, J. P., & White, P. J. (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp. Bot, 59(1), 93-109.
  • Hu, Q. (2004) Environmental Effects on Cell Composition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell: Oxford, U.K., 83–93.
  • Ismail M. (2005) Aluminum-phosphorus interactions on growth and some physiological traits of carrot and radish plants. Acta Agron Hung, 53: 293−301.
  • Kampfenkel, K., Vanmontagu, M., & Inze, D. (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem., 225(1), 165-167.
  • Kumar Saha, S., Uma, L., & Subramanian, G. (2003) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol., 45(3), 263-272.
  • Liefer, J., Garg, A., Campbell, D., Irwin, A and Finke, Z. (2018) Nitogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. Plos one, 14(10): e0224489.
  • Lin, Q., Liang, R., Huang, Q., Luo, S., Anderson, M., Bowler, C., & Gao, H. (2017) Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. Plos one, 12(9), e0184849.
  • Liu, Y., Zhao, Z., Si, J., Di, C., Han, J., & An, L. (2009) Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul, 59(3), 207-214.
  • Lushchak, V. I. (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C. 153, 175–190.
  • Markou, G., Vandamme, D., and Muylaert, K. (2014) Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour Technol. 166, 259–265.
  • McCarthy, J. J. (1983) Nitrogen cycling in near surface waters of the open ocean. Nitrogen in the marine environment, 487-512.
  • Montibus, M., Pinson-Gadais, L., Richard-Forget, F., Barreau, C., and Ponts, N. (2015) Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit. Rev. Microbiol. 41, 295–308.
  • Nakano, Y., & Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22(5), 867-880.
  • Niemi, A. (1979) Blue-green algal blooms and N: P ratio in the Baltic Sea. Acta Botanica Fennica, 110, 57-61.
  • Nishibayashi, Y., Saito,M., Uemura, S., Takekuma, S., Takekuma, H., and Yoshida, Z. (2004). Buckminsterfullerenes - A non-metal system for nitrogen fixation. Nature, 428, 279–280.
  • Noctor, G., & Foyer, C. H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol, 49(1), 249-279.
  • Olivares, J., Bedmar, J., and Sanjuan, J. (2013) Biological nitrogen fixation in the context of global change. Mol. Plant-Microbe Interact. 26, 486–494.
  • Paerl, H. W., R. S. Fulton, P. H. Moisander, and J. Dyble. 2001 Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1,76–113.
  • Peng, L., Lang, S., Wang, Y., Pritchard, H. W., & Wang, X. (2017) Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. J. Exp. Bot, 68(13), 3585-3601.
  • Perry, G., Raina, A. K., Nunomura, A., Wataya, T., Sayre, L. M., & Smith, M. A. (2000) How important is oxidative damage? Lessons from Alzheimer's disease. Free Radic. Biol. Med, 28(5), 831-834.
  • Qi, H., Wang, J., & Wang, Z. (2013) A comparative study of the sensitivity of F v/F m to phosphorus limitation on four marine algae. J. Ocean Univ. China, 12(1), 77-84.
  • Raven, J. A., Wollenweber, B., & Handley, L. L. (1992) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol., 121(1), 19-32.
Еще
Статья научная