Deformation of the transmission towers: analytical solution

Автор: Kirsanov Mikhail Nikolaevich, Khromatov Vasiliy Efimovich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 3 (96), 2021 года.

Бесплатный доступ

The object of the study is a spatial model of a statically definable power line support truss. The four-sided truss has a cross-shaped lattice and a pyramidal extension at the base. In the upper part of the truss, there are consoles for attaching the carrier cables. The corner nodes in the base are attached to the ground by one spherical joint, a cylindrical joint, and two vertical posts. Two types of loads are considered: a horizontal load evenly distributed over the nodes of one face (wind), and a vertical load applied to one of the consoles. The aim is to determine the analytical dependence of the deflection of the structure on the number of mast panels in its middle part. Method. To determine the deflection, the Mohr integral is used. The forces in the rods are located simultaneously with the reactions of the supports from the general system of linear equilibrium equations of all nodes. Obtaining a solution and generalizing it to an arbitrary number of panels is obtained by induction in the Maple computer mathematics system. Results. The dependence of the deflection of the console and the displacement of the mast top on the number of panels is obtained in the form of a formula containing up to eight coefficients in the form of polynomials in the number of panels of degree no higher than the fourth. The analytical dependences of the forces in some rods as a function of the number of panels are determined. Cubic asymptotics of the solutions is found.

Еще

Truss, mast, wind load, analytical solution, deflection, maple, induction

Короткий адрес: https://sciup.org/143175791

IDR: 143175791   |   DOI: 10.4123/CUBS.96.2

Список литературы Deformation of the transmission towers: analytical solution

  • Arndt, M., Machado, R.D., Scremin, A. An adaptive generalized finite element method applied to free vibration analysis of straight bars and trusses. Journal of Sound and Vibration. 2010. 329(6). Pp. 659–672. DOI:10.1016/j.jsv.2009.09.036.
  • Basu, B. Tower design and analysis. Wind Power Generation and Wind Turbine Design. 2010. 44. Pp. 527–557. DOI:10.2495/978-1-84564-205-1/16.
  • Lu, C. Ou, Y., Ma, X., Mills, J.E. Structural Analysis of Lattice Steel Transmission Towers: A Review. Journal of Steel Structures & Construction. 2016. 2(1). Pp. 1–11. DOI:10.4172/2472-0437.1000114.
  • Roy, S., Kundu, C.K. State of the art review of wind induced vibration and its control on transmission towers. 29. Elsevier Ltd, 01-02-2021.
  • Itam, Z., Beddu, S., Mohd Kamal, N.L., Bamashmos, K.H. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower. IOP Conference Series: Earth and Environmental Science. 2016. 32(1). DOI:10.1088/1755-1315/32/1/012044.
  • Macareno, L.M., Agirrebeitia, J., Angulo, C., Avilés, R. FEM subsystem replacement techniques for strength problems in variable geometry trusses. Finite Elements in Analysis and Design. 2008. 44(6–7). Pp. 346–357. DOI:10.1016/j.finel.2007.12.003.
  • Vatin, N., Havula, J., Martikainen, L., Sinelnikov, A.S., Orlova, A. V., Salamakhin, S. V. Thin-walled cross-sections and their joints: Tests and FEM-modelling. Advanced Materials Research. 2014. 945–949. Pp. 1211–1215. DOI:10.4028/www.scientific.net/AMR.945-949.1211.
  • Kirsanov, M.N. Analytical assessment of the frequency of natural vibrations of a truss with an arbitrary number of panels. Structural Mechanics of Engineering Constructions and Buildings. 2020. 16(5). Pp. 351–360. DOI:10.22363/1815-5235-2020-16-5-351-360. URL: http://journals.rudn.ru/structural-mechanics/article/view/24967 (date of application: 11.03.2021).
  • Voropay, R.A., Domanov, E.V. Analytical solution of the problem of shifting a movable support of a truss of arch type in the Maple system. Postulat. 2019. 1. URL: http://vuz.exponenta.ru/1/vd.pdf (date of application: 27.02.2021).
  • Voropay, R.A., Domanov, E.V. The derivation of the general formula for the shift of the movable support of arch type truss using the method of induction on two parameters in the system Maple. Postulat. 2019. (2). URL: http://vuz.exponenta.ru/1/vd2.pdf (date of application: 9.05.2021).
  • Rakhmatulina, A.R., Smirnova, A.A. The dependence of the deflection of the arched truss loaded on the upper belt, on the number of panels. Science Almanace. 2017. 28(2–3). Pp. 268–271. DOI:10.17117/na.2017.02.03.268. URL: http://ucom.ru/doc/na.2017.02.03.268.pdf (date of application: 9.05.2021).
  • Kazmiruk I.Yu. On the arch truss deformation under the action of lateral load. Science Almanac. 2016. 17(3–3). Pp. 75–78. DOI:10.17117/na.2016.03.03.075. URL: http://ucom.ru/doc/na.2016.03.03.075.pdf (date of application: 9.05.2021).
  • Arutyunyan, V.B. Calculation of the deflection of a statically indeterminate beam truss. Postulat. 2018. (6). URL: http://vuz.exponenta.ru/1/ar18.pdf.
  • Kirsanov, M.N., Suvorov, A.P. Studying Deformations of an Flat Truss Structure Statically Indeterminated Externally. Vestnik MGSU. 2017. (8). Pp. 869–875. DOI:10.22227/1997-0935.2017.8.869-875.
  • Kirsanov, M.N. Analytical calculation of the frame with an arbitrary number of panels. Magazine of Civil Engineering. 2018. 82(6). Pp. 127–135. DOI:10.18720/MCE.82.12.
  • Kirsanov, M.N. Formulas for computing of deflection and forces in the truss with arbitrary number of panels. International Journal for Computational Civil and Structural Engineering. 2018. 14(2). Pp. 90–95. DOI:10.22337/2587-9618-2018-14-2-90-95. URL: http://ijccse.iasv.ru/article/view/140 (date of application: 26.04.2021).
  • Belyankin, N.A., Boyko, A.Y. Formula for deflection of a girder with an arbitrary number of panels under the uniform load. Structural Mechanics and Structures. 2019. 1(20). Pp. 21–29. URL: https://www.elibrary.ru/download/elibrary_37105069_21945931.pdf.
  • Ilyushin, A. The formula for calculating the deflection of a compound externally statically indeterminate frame. Structural mechanics and structures. 2019. 3(22). Pp. 29–38. URL: https://www.elibrary.ru/download/elibrary_41201106_54181191.pdf.
  • Voropay, R. A., Domanov, E. V. The formula for the dependence of the deflection of a truss with an asymmetric lattice on the number of panels. Postulat. 2018. 6. Pp. 61. URL: http://vuz.exponenta.ru/1/VrpDm.pdf.
  • Kirsanov, M.N. Deformations of the Rod Pyramid: An Analytical Solution. Construction of Unique Buildings and Structures. 2021. 95(2). Pp. 9501–9501. DOI:10.4123/CUBS.95.1. URL: https://unistroy.spbstu.ru/article/2021.95.1 (date of application: 17.04.2021).
  • Petrichenko, E.A. Lower bound of the natural oscillation frequency of the Fink truss. Structural Mechanics and Structures. 2020. 26(3). Pp. 21–29. URL: https://www.elibrary.ru/item.asp?id=44110287 (date of application: 11.03.2021).
  • Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 17.04.2021).
  • Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
  • Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
  • Rapp, B.E. Introduction to Maple. Microfluidics: Modelling, Mechanics and Mathematics. Elsevier, 2017. Pp. 9–20.
  • Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008.
  • Kitaev, S.S. Derivation of the formula for the deflection of a cantilevered truss with a rectangular diagonal grid in the computer mathematics system Maple. Postulat. 2018. 5–1. Pp. 43. URL: http://e-postulat.ru/index.php/Postulat/article/view/1477 (date of application: 3.03.2021).
  • Voropay, R.A. Analytical calculation of the deflection of a beam truss with parallel belts. Postulat. 2018. 6. Pp. 96. URL: http://vuz.exponenta.ru/1/vrp.pdf (date of application: 3.03.2021).
Еще
Статья научная