Deformations and natural frequency of a triangular truss: analytical solutions
Автор: Kirsanov Mikhail Nikolaevich
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 2 (100), 2022 года.
Бесплатный доступ
The object of research. A new scheme of a lattice externally statically indeterminate truss in the form of a triangle with a lower chord supported by vertical posts and a fixed hinge is considered. When looking for the forces in critical bars and deflection, a vertical load is considered, which is evenly distributed over all external and internal nodes of the truss. The dependence of the deflection of the truss top on the load, dimensions and number of truss panels is given. A formula is derived for the lower estimate of the first frequency of natural oscillations. Method. The calculation of forces is carried out by cutting out all the nodes of the structure. The number of unknowns of the system of linear equilibrium equations in the projection on the coordinate axes includes both forces and reactions of supports. The deflection is calculated in analytical form using the Maxwell-Mohr formula and is generalized by induction from solving a number of problems for trusses with a different number of panels to an arbitrary order of a regular truss. To find an analytical estimate of the first frequency of natural oscillations of nodes endowed with masses, each of which has two degrees of freedom, the Dunkerley lower estimate method is used. Results. The formulas obtained for the forces in the rods, deflection and the first frequency have a compact form, which can be used to obtain simple evaluation solutions. The lower analytical estimate of the first oscillation frequency is in good agreement with the numerical solution for the entire spectrum of structure oscillations. All necessary transformations are performed in the Maple symbolic mathematics system. Linear asymptotics of solutions for deflection and forces are found.
Triangular truss, vibrations frequency, maple, analytical solution, induction, dunkerley method, asymptotics, maxwell-mohr formula, deflection
Короткий адрес: https://sciup.org/143178771
IDR: 143178771 | DOI: 10.4123/CUBS.100.5
Список литературы Deformations and natural frequency of a triangular truss: analytical solutions
- Hoseini Vaez, S.R., Mehanpour, H., Fathali, M.A. Reliability assessment of truss structures with natural frequency constraints using metaheuristic algorithms. Journal of Building Engineering. 2020. 28. DOI:10.1016/j.jobe.2019.101065.
- Lemonge, A.C.C., Carvalho, J.P.G., Hallak, P.H., Vargas, D.E.C. Multi-objective truss structural optimization considering natural frequencies of vibration and global stability. Expert Systems with Applications. 2021. 165. Pp. 113777. DOI:10.1016/j.eswa.2020.113777.
- Siriguleng, B., Zhang, W., Liu, T., Liu, Y.Z. Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Engineering Structures. 2020. 207. Pp. 109932. DOI:10.1016/J.ENGSTRUCT.2019.109932.
- Itam, Z., Beddu, S., Mohd Kamal, N.L., Bamashmos, K.H. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower. IOP Conference Series: Earth and Environmental Science. 2016. 32(1). DOI:10.1088/1755-1315/32/1/012044.
- Colajanni, P., La Mendola, L., Latour, M., Monaco, A., Rizzano, G. FEM analysis of push-out test response of Hybrid Steel Trussed Concrete Beams (HSTCBs). Journal of Constructional Steel Research. 2015. 111. Pp. 88–102. DOI:10.1016/j.jcsr.2015.04.011.
- Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
- Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
- Zok, F.W., Latture, R.M., Begley, M.R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 2016. 96. Pp. 184–203. DOI:10.1016/j.jmps.2016.07.007. URL: http://dx.doi.org/10.1016/j.jmps.2016.07.007.
- Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 27.02.2021).
- Dai, Q. Analytical Dependence of Planar Truss Deformations on the Number of Panels. AlfaBuild. 2021. 17. DOI:10.34910/ALF.17.1.
- Tinkov, D. V. The optimum geometry of the flat diagonal truss taking into account the linear creep. Magazine of Civil Engineering. 2016. 61(1). Pp. 25–32. DOI:10.5862/MCE.61.3.
- Rakhmatulina A.R., Smirnova, A.A. Analytical calculation and analysis of planar springel truss. Structural mechanics and structures. 2018. 17(2). Pp. 72–79. URL: http://vuz.exponenta.ru/PDF/NAUKA/Rahm-Smirn2018-2.pdf (date of application: 27.02.2021).
- Kirsanov, M. Deformations And Spatial Structure Vibrations Frequency of The Rectangular Contour Type Cover: Analytical Solutions. Construction of Unique Buildings and Structures. 2021. 98(9805). DOI:10.4123/CUBS.98.5. URL: https://unistroy.spbstu.ru/userfiles/files/2021/5(98)/9805.pdf (date of application: 13.04.2022).
- Petrichenko, E.A. Lower bound of the natural oscillation frequency of the Fink truss. Structural Mechanics and Structures. 2020. 26(3). Pp. 21–29. URL: https://www.elibrary.ru/item.asp?id=44110287 (date of application: 11.03.2021).
- Matrosov, A. V. Computational Peculiarities of the Method of Initial Functions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. 11619 LNCS. Pp. 37–51. DOI:10.1007/978-3-030-24289-3_4.
- Matrosov, A. V., Shirunov, G.N. Stress and strain state of thick plates under their own weight. 2015 International Conference on “Stability and Control Processes” in Memory of V.I. Zubov, SCP 2015 - Proceedings. 2015. Pp. 417–419. DOI:10.1109/SCP.2015.7342157.
- Matrosov, A. V., Suratov, V.A. Stress-strain state in the corner points of a clamped plate under uniformly distributed normal load. Materials Physics and Mechanics. 2018. 36(1). Pp. 124–146. DOI:10.18720/MPM.3612018_16.
- Goloskokov, D.P., Matrosov, A. V. Approximate analytical approach in analyzing an orthotropic rectangular plate with a crack. Materials Physics and Mechanics. 2018. 36(1). Pp. 137–141. DOI:10.18720/MPM.3612018_15.
- Goloskokov, D.P. Analyzing simply supported plates using Maple system. 2014 International Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA 2014 - Proceedings. 2014. Pp. 55–56. DOI:10.1109/ICCTPEA.2014.6893273.
- Mirsaidov, M.M., Abdikarimov, R.A., Vatin, N.I., Zhgutov, V.M., Khodzhaev, D.A., Normuminov, B.A. Nonlinear parametric oscillations of viscoelastic plate of variable thickness. Magazine of Civil Engineering. 2018. (6). Pp. 112–126. DOI:10.18720/MCE.82.11.
- Kaveh, A., Jafari, L., Farhoudi, N. Truss optimization with natural frequency constraints using a dolphin echolocation algorithm. Asian J. Civ. Eng. 2017. 16(1). Pp. 29–46.
- Kaveh, A., Zolghadr, A. Truss optimization with natural frequency constraints using a hybridized CSS–BBBC algorithm with trap recognition capability. Comput. Struct. 2012. 102–103. Pp. 14–27.
- Kaveh, A., Rahami, H., Shojaei, I. Swift Analysis of Civil Engineering Structures Using Graph Theory Methods. 2020. 290. DOI:10.1007/978-3-030-45549-1. URL: http://link.springer.com/10.1007/978-3-030-45549-1 (date of application: 11.03.2022).
- Kirsanov, M.N. Planar trusses: Schemes and Formulas. Cambridge Scholars Publishing Lady Stephenson Library. Newcastle upon Tyne, GB, 2019.
- Kirsanov, M.N. Deformations of the Rod Pyramid: An Analytical Solution. Construction of Unique Buildings and Structures. 2021. 95(2). Pp. 9501–9501. DOI:10.4123/CUBS.95.1. URL: https://unistroy.spbstu.ru/article/2021.95.1 (date of application: 17.04.2021).
- Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. 4(4). Pp. 510–517. DOI:10.22227/1997-0935.2020.4.510-517.
- Pekcan, G., Itani, A.M., Linke, C. Enhancing seismic resilience using truss girder frame systems with supplemental devices. Journal of Constructional Steel Research. 2014. 94. Pp. 23–32. DOI:10.1016/j.jcsr.2013.10.016. URL: http://dx.doi.org/10.1016/j.jcsr.2013.10.016.
- Resatalab, S., Ahmadi, M.T., Alembagheri, M. Seismic response sensitivity analysis of intake towers interacting with dam, reservoir, and foundation. Magazine of Civil Engineering. 2020. 98(7). Pp. 9901–9901. DOI:10.18720/MCE.99.1. URL: https://engstroy.spbstu.ru/article/2020.99.1 (date of application: 27.02.2021).
- Kumar, R., Sahoo, D.R. Seismic fragility of steel special truss moment frames with multiple ductile vierendeel panels. Soil Dynamics and Earthquake Engineering. 2021. 143. Pp. 106603. DOI:10.1016/j.soildyn.2021.106603.
- Vorobev, O.V. On methods of obtaining an analytical solution for the problem of natural frequencies of hinged structures. Structural mechanics and structures. 2020. 24(1). Pp. 25–38. URL: http://vuz.exponenta.ru/pdf/NAUKA/elibrary_42591122_21834695.pdf.
- Low, K.H. A modified Dunkerley formula for eigenfrequencies of beams carrying concentrated masses. International Journal of Mechanical Sciences. 2000. 42(7). Pp. 1287–1305. DOI:10.1016/S0020-7403(99)00049-1.
- Levy, C. An iterative technique based on the Dunkerley method for determining the natural frequencies of vibrating systems. Journal of Sound and Vibration. 1991. 150(1). Pp. 111–118. DOI:10.1016/0022-460X(91)90405-9.
- Kirsanov, M.N., Khromatov, V.Y. Modeling deformations of triangular shape flat truss. Structural Mechanics and Analysis of Constructions. 2017. 275(6). Pp. 24–28. URL: https://www.elibrary.ru/item.asp?id=30638551 (date of application: 8.07.2021).