Deformations of the rod pyramid: an analytical solution
Автор: Kirsanov Mikhail Nikolaevich
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 2 (95), 2021 года.
Бесплатный доступ
The object of the study is a spatial statically determinate pyramid-type covering truss. The truss has vertical support posts along the perimeter of the base. The corner nodes are fixed on spherical support, cylindrical, and rack. The truss has axial symmetry. The aim is to determine the analytical dependence of the deflection of the structure on the number of panels in its base. Two types of loads are considered: distributed along the edges and vertical loads concentrated at the vertex. Method. The Maxwell - Mohr formula is used to determine the deflection. The forces in the rods, together with the reactions of the supports, are found in their general system of the equilibrium equation of all nodes. The generalization of partial solutions to an arbitrary number of panels is obtained by induction using operators of the Maple computer mathematics system. Results. The dependence of the deflection on the number of panels is obtained in the form of a compact formula containing quadratic or linear polynomials in the number of panels. The inclined and horizontal asymptotes of the solutions are found. The existence of deflection minima depending on the number of panels is shown.
Truss, pyramid, analytical solution, deflection, maple, induction
Короткий адрес: https://sciup.org/143175785
IDR: 143175785 | DOI: 10.4123/CUBS.95.1
Список литературы Deformations of the rod pyramid: an analytical solution
- Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Stability and load capacity of an elastoplastic pyramidal truss. International Journal of Solids and Structures. 2019. 171. Pp. 158–173. DOI:10.1016/j.ijsolstr.2019.04.011.
- Ye, G., Bi, H., Hu, Y. Compression behaviors of 3D printed pyramidal lattice truss composite structures. Composite Structures. 2020. 233. Pp. 111706. DOI:10.1016/j.compstruct.2019.111706.
- Wang, Y.Z., Ma, L. Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure. Composite Structures. 2021. 260. Pp. 113257. DOI:10.1016/j.compstruct.2020.113257.
- Liu, M., Cao, D., Zhang, X., Wei, J., Zhu, D. Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. International Journal of Mechanical Sciences. 2021. 194. Pp. 106197. DOI:10.1016/j.ijmecsci.2020.106197.
- Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
- Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
- Galishnikova, V.V., Ignatiev, V.A. Regulyarnyye sterzhnevyye sistemy. Teoriya i metody rascheta. [Regular rod systems. Theory and methods of calculation]. Volograd, VolgGASU, 2006. ISBN:5-98276-125-7.
- Ignatiev, V.A. Raschet regulyarnykh sterzhnevykh sistem [Calculation of regular rod systems]. Saratov, Saratov Higher Military Chemical Military School, 1973. https://www.elibrary.ru/item.asp?id=28958501.
- Voropay, R. A., Domanov, E. V. The dependence of the deflection of a planar beam truss with a complex lattice on the number of panels in the system Maple. Postulat. 2019. (1). URL: http://e-postulat.ru/index.php/Postulat/article/view/2258/0.
- Ilyushin, A. The formula for calculating the deflection of a compound externally statically indeterminate frame. Structural mechanics and structures. 2019. 22(3). Pp. 29–38. URL: https://www.elibrary.ru/item.asp?id=41201106.
- Voropay, R. A., Domanov, E. V. The formula for the dependence of the deflection of a truss with an asymmetric lattice on the number of panels. Postulat. 2018. (6). Pp. 61. URL: http://e-postulat.ru/index.php/Postulat/article/view/1653.
- Ovsyannikova, V.M. Dependence of deformations of a trapezous truss beam on the number of panels. Structural Mechanics and Structures. 2020. 26(3). Pp. 13–20.
- Rakhmatulina, A.R., Smirnova, A.A. Two-parameter derivation of the formula. Postulat. 2018. 31(5–1). URL: http://e-postulat.ru/index.php/Postulat/article/view/1456.
- Rakhmatulina, A.R., Smirnova, A.A. The formula for the deflection of a truss loaded at half-span by a uniform load. Postulat. 2018. 29(3). URL: http://e-postulat.ru/index.php/Postulat/article/view/1293.
- Kitaev, S.S. Derivation of the formula for the deflection of a cantilevered truss with a rectangular diagonal grid in the computer mathematics system Maple. Postulat. 2018. 5–1. Pp. 43. URL: http://e-postulat.ru/index.php/Postulat/article/view/1477.
- Voropay, R.A. Derivation of the formula for the deflection of the truss with additional horizontal struts. Postulat. 2018. 6. Pp. 105. URL: http://e-postulat.ru/index.php/Postulat/article/view/2431.
- Kirsanov, M.N., Vorobyev, O.V. Calculating of a spatial cantilever truss natural vibration frequency with an arbitrary number of panels: analytical solution. Construction of Unique Buildings and Structures. 2021. 94. Pp. 9402. DOI:10.4123/CUBS.94.2.
- Kirsanov, MN, Tinkov, DV. Analysis of the natural frequencies of oscillations of a planar truss with an arbitrary number of panels. Vestnik MGSU. 2019. 14(4). Pp. 284–292. DOI:10.22227/1997-0935.2019.3.284-292.
- Kirsanov, M.N., Petrichenko, E.A., Vorobev, O. V. The formula for the lower estimate of the fundamental frequency of natural vibrations of a truss with an arbitrary number of panels. Construction of Unique Buildings and Structures. 2021. 94(1). Pp. 9403–9403. DOI:10.4123/CUBS.94.3.
- Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Closed-form solutions for the symmetric nonlinear free oscillations of pyramidal trusses. Physica D: Nonlinear Phenomena. 2021. 417. Pp. 132814. DOI:10.1016/j.physd.2020.132814.
- Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. 4(4). Pp. 510–517. DOI:10.22227/1997-0935.2020.4.510-517.
- Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008.
- Rapp, B.E. Introduction to Maple. Microfluidics: Modelling, Mechanics and Mathematics. Elsevier, 2017. Pp. 9–20.
- Wolfram|Alpha: Computational Intelligence. URL: https://www.wolframalpha.com/ (date of application: 4.07.2021).