Design of a liquid cooler for a 100 kW semiconductor power converter

Автор: Zhang Ruirui, Golyanin Anton

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 8 т.8, 2022 года.

Бесплатный доступ

He focus of this research in this paper is to design a 100 kW power liquid cooler, semiconductor converter liquid cooler, thus using pulsed thermal medium circulation to increase the capacity of the cooling system on the surface of the power semiconductor device. Based on comparing the parameters of conventional and pulsed coolant circulation mode, the liquid cooling system of power semiconductor converter is studied by physical method. In laboratory testing, experiments are planned according to the order and frequency of changing device operating modes. Finally, the experimental research results are processed, and the relationship between the discharge heat power and the temperature drop and the coolant flow is established by using the mathematical statistics method. Result: Depending on the exhaust heat power and the coolant flow in the range of 3-1.5 L/min, the pulsating heat transfer enhancement in the liquid cooling system of the power semiconductor converter can increase the thermal capacity and the current load of the power semiconductor converter by a factor of almost 2.5 times, respectively. At the same time, the circulation of the coolant in the inner circuit is carried out by a hydraulic powered film pump.

Еще

Liquid cooler, semiconductor converter, pulsating heat transfer

Короткий адрес: https://sciup.org/14124775

IDR: 14124775   |   DOI: 10.33619/2414-2948/81/35

Список литературы Design of a liquid cooler for a 100 kW semiconductor power converter

  • En-long Z. H., Guang-wu W. A., Chong-qiang L., Zhi-min L., Bo-you L. I. A. Application of a Dry Water Cooling System Combined with Air Cooler and Refrigeration Unit // 2019 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2019. P. 1455-1463.
  • Dede E. M., Joshi S. N., Zhou F. Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink // Journal of Mechanical Design. 2015. V. 137. №11.
  • Yang Y., Yang F., Zeng D., Huang Z., Zhang J., Hao S., Liu B. Surfactant-free synthesis of hollow mesoporous carbon spheres and their encapsulated Au derivatives using biopolymeric chitosan // Journal of colloid and interface science. 2018. V. 531. P. 291-299.
  • Laloya E., Lucia O., Sarnago H., Burdio J. M. Heat management in power converters: From state of the art to future ultrahigh efficiency systems // IEEE Transactions on Power Electronics. 2015. V. 31. №11. P. 7896-7908.
  • Sakanova A., Tong C. F., Nawawi A., Simanjorang R., Tseng K. J., Gupta A. K. Investigation on weight consideration of liquid coolant system for power electronics converter in future aircraft // Applied Thermal Engineering. 2016. V. 104. P. 603-615.
  • Wu R., Hong T., Cheng Q., Zou H., Fan Y., Luo X. Thermal modeling and comparative analysis of jet impingement liquid cooling for high power electronics // International Journal of Heat and Mass Transfer. 2019. V. 137. P. 42-51.
  • Lee H., Smet V., Tummala R. A review of SiC power module packaging technologies: Challenges, advances, and emerging issues // IEEE Journal of Emerging and Selected Topics in Power Electronics. 2019. V. 8. №1. P. 239-255.
  • Vemulapati U. et al. Recent advancements in IGCT technologies for high power electronics applications // 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe). IEEE, 2015. P. 1-10.
  • Behjati H., Davoudi A. Reliability analysis framework for structural redundancy in power semiconductors // IEEE Transactions on Industrial Electronics. 2012. V. 60. №10. P. 4376-4386.
  • Chen H., Wei W. B., Lin H., Wu X. T. Transition-metal-based chalcogenides: A rich source of infrared nonlinear optical materials // Coordination Chemistry Reviews. 2021. V. 448. P. 214154.
Еще
Статья научная