Designing of a liquid cooler with a phase transition with a power of 5 kW
Автор: Bazhanov A., Yao Yi.
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 10 т.9, 2023 года.
Бесплатный доступ
A diagram and installation of a prototype of a two-flow heat pipe with the ability to regulate the parameters of the working environment have been developed. The installation allows the heat pipe to operate in both normal and pulsed cooling modes. Data were obtained that made it possible to obtain the dependence of the heat transfer coefficient on the heater power, and the heat transfer coefficients in stationary and pulsed modes were determined. In this article, the Aspen Hysys software package is selected as the software and circuit simulation. As a result of theoretical studies, it was established that the heat transfer coefficient of a heat pipe in pulsed mode is 12% higher than in stationary mode with the same initial coolant parameters. Based on the results of the work, it is proposed to use the method of pulsed supply of liquid coolant as one of the ways to increase the heat transfer of a heat pipe.
Cavitator, cavitation heat generator, frequency, heat transfer, control variables
Короткий адрес: https://sciup.org/14128643
IDR: 14128643 | DOI: 10.33619/2414-2948/95/17
Список литературы Designing of a liquid cooler with a phase transition with a power of 5 kW
- Zhong, C. (2020, July). Research on the Solar Water Cooler. In IOP Conference Series: Earth and Environmental Science (Vol. 546, No. 2, p. 022004). IOP Publishing. https://doi.org/10.1088/1755-1315/546/2/022004
- Jiang, P., & Lin, X. (2020, July). Air conditioning fresh air unit with solar air collector and evaporative cooler. In IOP Conference Series: Earth and Environmental Science (Vol. 546, No. 2, p. 022042). IOP Publishing. https://doi.org/10.1088/1755-1315/546/2/022042
- Ruan, H., Liao, W. L., & Huang, Y. (2015). Research on cavitation noise numerical prediction of hydrofoil. J Xian Univ Technol, 31(1), 67-71.
- Feng, Z. Y., & Wu, S. J. (2016). Research on cavitation noise spectrum. Journal of Taiyuan Normal University (Natural Science Edition), 15(2), 8-11.
- Ma, D. J., Li, G. S., & Shi, H. Z. (2009). Experimental research on parameter optimization of hydraulic pulse cavitation jet generator. Petroleum Machinery, 37(12), 9-11.
- Levtsev, A. P., Kudashev, S. F., Makeev, A. N., & Lysyakov, A. I. (2014). Vliyanie impul'snogo rezhima techeniya teplonositelya na koeffitsient teploperedachi v plastinchatom teploobmennike sistemy goryachego vodosnabzheniya. Sovremennye problemy nauki I obrazovaniya, (2), 89-89. (in Russian).
- Nikolaev, G. P. (2007). Teplofizika. Ekaterinburg. (in Russian).
- Maidanik, Yu. F., & Sudakov, R. E. (2003). Obespechenie teplovogo rezhima priborov I oborudovaniya razlichnogo naznacheniya s ispol'zovaniem konturnykh teplovykh trubok. Priborostroitel'naya praktika, (2(3)), 26-31. (in Russian).
- Levtsev, A. P., Makeev, A. N., & Kudashev, S. F. (2010). Impul'snye sistemy teplo-, vodosnabzheniya sel'skokhozyaistvennykh ob"ektov. Agroinzheneriya, (2), 77-81. (in Russian).
- Levtsev, A. P., & Makeev, A. N. (2015). Impul'snye sistemy teplosnabzheniya I vodosnabzheniya. Saransk. (in Russian).
- Bazhanov, A. G., & Prokopov, N. G. (2021). Impul'snaya regeneratsiya kationita v natriikationovom fil'tre. Inzhenernyi vestnik Dona, (9 (81)), 401-411. (in Russian). EDN: INRMBN
- Bazhanov, A. G., & Uezdin, A. V. (2022). Razrabotka kombinirovannogo teploistochnika s vneshnei kameroi i promezhutochnym konturom na uglekislom gaze. Inzhenernyi vestnik Dona, (5 (89)), 71-80. (in Russian). EDN: DZZVUD