Destruction of stable emulsions using nanodispersed fullerenes
Автор: Vakhitova R.I., Saracheva D.A., Kiyamov I.K., Sabitov L.S., Oleinik V.Iv.
Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild
Рубрика: Исследование свойств наноматериалов
Статья в выпуске: 6 т.14, 2022 года.
Бесплатный доступ
Introduction. This article describes the results of the destruction processes studies of stable emulsion suspension sludge systems, conducted by the authors. Destruction processes are achieved by adding nanoparticles to demulsifying compositions. Currently, there is no universal composition demulsifier that effectively destroys emulsions formed in oil sludges. Research methods. To deal with this issues, the authors have conducted research on the creation of an effective demulsifier containing nanosized particles of fullerenes. The studies were carried out with dispersed oil-slurry emulsion-suspension systems, selected from open storage ponds of enterprises of JSC «Tatoilgaz» and JSC «TAIF-NK». For the destruction of the oil-containing system of the emulsion-suspension type, a composite mixture of complex action has been developed, which includes anionic wetting agents, nonionic surfactants, flotation reagents, detergents and alkaline buffer solutions that provide the required value of a constant indicator of the acid-base balance of the aqueous medium. Results and its discussion. A composite demulsifying mixture of complex action, which increases the effectiveness of the wetting washing action of surfactants, namely, the diphilic structure of the dispersed medium changes to hydrophilic, that is, the contacts of particles having a monophilic surface with the hydrocarbon phase of the emulsion medium are broken. When particles pass into the water volume from the phase separation boundary, the layer on the surface of the emulsified water is destroyed. The dehydration time of petroleum products is reduced by almost 2 times. Conclusion. During the research, the intensification and increase of the efficiency have been successfully reached.
Emulsion, demulsifier, fullerene, oil sludge
Короткий адрес: https://sciup.org/142236271
IDR: 142236271 | DOI: 10.15828/2075-8545-2022-14-6-444-448
Список литературы Destruction of stable emulsions using nanodispersed fullerenes
- Chulkova A.O., Prochukhan K.Yu., Shafikova E.A., Apkarimova G.I., Prochukhan Yu.A. The effectiveness of demulsifiers in the destruction process of oil acid emulsions. Neftepromysl. Delo. 2016; 7: 26 – 29 (in Russian).
- Sladovskaya O.Yu., Otazhonov S.I., Galina L.A., Sladovsky A.G. Modern demulsifiers for the destruction of oil-water emulsions. Vestn. Tekhnolog. Un-ta. 2018; 21(2): 49 – 53 (in Russian).
- Kang W., Yin X., Yang H., Zhao Y., Huang Z., Hou X., Sarsenbekuly B., Zhu Z., Wang P., Zhang X., Geng J., Aidarova S. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. Colloid. Surf. A: Physicochem. Eng. Aspects. 2018; 545:197 – 204. https://doi.org/10.1016/j.colsurfa.2018.02.055.
- Akberova A.F. Intensification of the process of destruction of stable oil-water emulsions using new effective composite demulsifiers. Neftegaz. Delo. 2019; 17(2): 68 – 73 (in Russian). https://doi.org/10.17122/ngdelo-2019-2-68-73.
- Akhmadova Kh.Kh., Takaeva M.A., Musaeva M.A., Syrkin A.M. The history of the development and use of demulsifiers in the extraction and preparation of oil for refining. Istoriya Pedagog. Estestvoznan. 2015; 1: 27 – 34 (in Russian).
- Cao J., Xu Z., Gong Q., Jin Z., Zhang L. Study on the emulsion stability of shengli oilfield chunliang crude oil. Shiyou Xuebao, Shiyou Jiagong. 2016; 32(5): 997 – 1004. https://doi.org/10.3969/j.issn.1001-8719.2016.05.018.
- Sladovskaya O.Y., Tsyganov D.G., Bashkirtseva N.Y., Mukhametzyanova A.A. Peculiarities of the process of destruction of stable water-oil emulsions in intermediate layers. J. Chem. Technol. Metallurg. 2018; 53( 2): 191 – 201.
- Grenoble Z., Trabelsi S. Mechanisms, performance optimization and new developments in demulsification processes for oil and gas applications. Adv. Colloid Interf. Sci. 2018; 260: 32 – 45. https://doi.org/10.1016/j.cis.2018.08.003.
- Tyugaeva E.S., Dolomatov M.Yu. Reasons for the formation of stable oil emulsions and methods for their destruction. Universum: Tekhnich. Nauki. 2017; 4 (37): 64 – 69 (in Russian).
- Huseynova L.V., Huseynova M.A. The environmentally friendly technologies for oil sludge utilizing. Modern Sci. 2018; 3: 143 – 147.
- Nafikova R.A., Dikhtyar T.D. Improving the technology for the preliminary preparation of oil sludge for centrifugation using ultrahigh frequency currents. Neftepromysl. Delo. 2014; 4: 52 – 55 (in Russian).
- Gron V.A., Korostovenko V.V., Shakhrai S.G. The problem of the formation, processing and disposal of oil sludge. Usp. Sovremen. Estestvoznan. 2013; 9: 159 – 162 (in Russian).
- Shirinkin S.V. Fullerenes. History of discovery and use. Energiya: Ekonomika, Tekhnika, Ekologiya. 2013; 10: 63 – 66 (in Russian).
- Mikhailov A.G., Novikova E.E. Fullerenes as a modification of carbon: production methods and use. Rossiya Molodaya: Peredovye Tekhnologii – Promyshlennost’! 2013; 2: 289 – 292 (in Russian).
- Sodikov F., Tabarov S., Tuychiev Sh., Tuychiev L., Aknazarova Sh. Fullerenes C60 and C70 are surface-active substances. Vestn. Tadzhik. Nats. Un-ta. Ser. Estestvenn. Nauk. 2016: 1-3 (200): 88 – 90 (in Russian).
- Kel A.V. Fullerenes and carbon nanotubes. Innovatsion. Nauka. 2016: 11-3: 23 – 25 (in Russian).
- Altunina L.K., Svarovskaya L.I. Detergent compositions for oil sludge reclamation. Petrol. Chem. 2012; 52(2): 130 – 132. https://doi.org/10.1134/S0965544112010033.
- Saikia N.J., Sengupta P., Gogoi P.K., Borthakur P.C. Physicochemical and cementitious properties of sludge from oil field effluent treatment plant. Cement Concr. Res. 2001; 31( 8): 1221 – 1225.
- Deza M., Sikirić M.D., Shtogrin M.I. Fullerenes and disk-full-erenes. Russ. Mathemat. Surv. 2013; 68(4): 665 – 720. https://doi.org/10.1070/RM2013v068n04ABEH004850.
- Kroto H. C60, fullerenes, giant fullerenes and soot. Pure and Appl. Chem. 1990: 62(3): 407 – 415. https://doi.org/10.1351/pac199062030407.