Development of a hydraulic damping device to protect a centrifugal pump

Автор: Fang Yilin, Kudashev S.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 7 т.10, 2024 года.

Бесплатный доступ

This study focuses on the utilization of hydraulic accumulators to mitigate hydraulic shock. The pressure energy within the system is converted into compressed gas energy in the accumulator. This continuous conversion between the two forms of energy allows for the absorption of hydraulic shock force, thereby ensuring system stability. The study involved the creation of experimental circuits, which were tested both with and without the inclusion of a hydraulic accumulator. The results confirmed that the accumulator has a substantial impact on reducing hydraulic shock phenomena. The study's findings demonstrate that the shocks in the hydraulic system can be efficiently managed by selecting an appropriate inflation pressure for the accumulator and utilizing various connection line data.

Еще

Hydraulic shock, hydraulic accumulator, damping calculation and analysis, experimental study

Короткий адрес: https://sciup.org/14130242

IDR: 14130242   |   DOI: 10.33619/2414-2948/104/37

Список литературы Development of a hydraulic damping device to protect a centrifugal pump

  • Roggenburg M., Esquivel-Puentes H. A., Vacca A., Evans H. B., Garcia-Bravo J. M., Warsinger D. M., Castillo L. Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines // Renewable Energy. 2020. V. 153. P. 1194-1204. https://doi.org/10.1016/j.renene.2020.02.060.
  • Wang F., Zhang Q., Wen Q., Xu B. Improving productivity of a battery powered electric wheel loader with electric-hydraulic hybrid drive solution // Journal of Cleaner Production. 2024. V. 440. P. 140776. https://doi.org/10.1016/j.jclepro.2024.140776.
  • Cecchi N. J., Liu Y., Vegesna R. V., Zhan X., Yang W., Campomanes L. A. E., Camarillo D. B. A wearable hydraulic shock absorber with efficient energy dissipation // International Journal of Mechanical Sciences. 2024. V. 270. P. 109097. https://doi.org/10.1016/j.ijmecsci.2024.109097.
  • Schickhofer L., Antonopoulos C. G. Cause-effect relationship between model parameters and damping performance of hydraulic shock absorbers // International Journal of Non-Linear Mechanics. 2024. V. 159. P. 104627. https://doi.org/10.1016/j.ijnonlinmec.2023.104627.
  • Fang Yilin, Kudashev S. Ways to Protect Equipment from Hydraulic Shock // Бюллетень науки и практики. 2024. Т. 10. №6. С. 296-305. https://doi.org/10.33619/2414-2948/103/33.
  • Zhang W., Wang G., Guo Y. Research on damping and energy recovery characteristics of a novel mechanical-electrical-hydraulic regenerative suspension system // Energy. 2023. V. 271. P. 127022. https://doi.org/10.1016/j.energy.2023.127022.
  • Liu D., Li C., Malik O. P. Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures // Applied Energy. 2021. V. 293. P. 116949. https://doi.org/10.1016/j.apenergy.2021.116949.
  • Wang S. K., Wang J. Z., Xie W., Zhao J. B. Development of hydraulically driven shaking table for damping experiments on shock absorbers // Mechatronics. 2014. V. 24. №8. P. 1132-1143. https://doi.org/10.1016/j.mechatronics.2014.09.001.
Еще
Статья научная