Разработка численного метода решения обратной задачи Коши для уравнения теплопроводности

Бесплатный доступ

В этой работе начальная температура была исследована в обратной задаче Коши для линейного уравнения теплопроводности, которая зависит от заданной температуры в заданное время с некоторыми шумовыми измерениями. В этой задаче начальное распределение температуры неизвестно, но вместо этого в то время известна температура, t=T > 0. Задачу теплопроводности можно сформулировать так, как интегральное уравнение первого рода Фредгольма. Хорошо известно, что эта проблема является некорректной задачей, и прямое решение этой проблемы неприемлемо. Алгоритм, используемый для определения конечномерного оператора для этой задачи, также использовал метод обобщенной несоответствия для уменьшения условной проблемы вариации экстремума к безусловной проблеме изменения экстремума для интегрального уравнения. Дискретизация интегрального уравнения позволила свести эту задачу к системе линейных алгебраических уравнений. Тогда для решения аппроксимации использовался метод инверсии регуляризации Тихонова. Наконец, был представлен пример численного расчета для проверки точности оценочного решения.

Еще

Некорректная задача, регуляризация, обратная задача, теплопроводность

Короткий адрес: https://sciup.org/147233193

IDR: 147233193   |   DOI: 10.14529/cmse190202

Статья научная