Development of an algorithm for automatic construction of a computational procedure of local image processing, based on the hierarchical regression

Автор: Kopenkov Vasiliy Nikolaevich, Myasnikov Vladislav Valerievich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений: Распознавание образов

Статья в выпуске: 5 т.40, 2016 года.

Бесплатный доступ

In this paper, we propose an algorithm for the automatic construction (design) of a computational procedure for non-linear local processing of digital signals/images. The aim of this research is to work out an image processing algorithm with a predetermined computational complexity and achieve the best quality of processing on the existing data set, while avoiding a problem of retraining or doing with less training. To achieve this aim we use a local discrete wavelet transform for a preliminary image analysis and the hierarchical regression to construct a local image processing procedure on the basis of a training dataset. Moreover, we work out a method to decide whether the training process should be completed or continued. This method is based on the functional of full cross-validation control, which allows us to construct the processing procedure with a predetermined computational complexity and veracity, and with the best quality.

Еще

Local processing, hierarchical regression, computational efficiency, machine learning, precedent-based processing, functional of full cross-validation

Короткий адрес: https://sciup.org/14059610

IDR: 14059610   |   DOI: 10.18287/2412-6179-2016-40-5-713-720

Список литературы Development of an algorithm for automatic construction of a computational procedure of local image processing, based on the hierarchical regression

  • Computer Image Processing, Part II: Methods and algorithms/A.V. Chernov, V.M. Chernov, M.A. Chicheva, V.A. Fursov, M.V. Gashnikov, N.I. Glumov, N.Y. Ilyasova, A.G. Khramov, A.O. Korepanov, A.V. Kupriyanov, E.V. Myasnikov, V.V. Myasnikov, S.B. Popov, V.V. Sergeyev, V.A. Soifer. -Ed. by V.A. Soifer. -VDM Verlag; 2009. -ISBN: 978-3-639-17545-5.
  • Woods, R. Digital Image Processing/R. Woods, R. Gonzalez. -2nd ed. -Prentice Hall, 2002. -ISBN 0-201-18075-8.
  • Pratt, W. Digital image processing/W. Pratt. -4th ed. -Wiley-Interscience, 2007. -ISBN: 978-0-471-76777-0.
  • Haykin, S. Neural Networks: A Comprehensive Foundation/S. Haykin. -Upper Saddle River, NJ: Prentice Hall, 1999. -ISBN 0-13-273350-1.
  • Breiman, L. Classification and regression trees/L. Breiman, J. Friedman, R. Olshen, C. Stone. -Monterey, CA: Wadsworth, Inc., 1984. -ISBN 978-0412048418.
  • Kopenkov, V.N. An algorithm for automatic construction of computational procedure of non-linear local image processing on the base of hierarchical regression/V.N. Kopenkov, V.V. Myasnikov//Computer Optics. -2012. -Vol. 36(2). -P. 257-266. -.
  • Vapnik, V.N. Theory of Pattern Recognition/V.N. Vapnik, A.Ya. Chervonenkis. -Moscow: “Nauka” Publisher, 1974. -.
  • Vorontsov, K. A combinatorial approach to assessing the quality of training algorithm/K. Vorontsov//Mathematical Problems of Cybernetics. -2004. -Vol. 13. -P. 5-36. -.
  • Kopenkov, V. Efficient algorithms of local discrete wavelet transform with HAAR-like bases/V. Kopenkov//Pattern Recognition and Image Analysis. -2008. -Vol. 18(4). -P. 654-661. -DOI: 10.1134/S1054661808040184.
  • Kopenkov, V. On halting the process of hierarchical regression construction when implementing computational procedures for local image processing/V. Kopenkov//Pattern Recognition and Image Analysis. -2014. -Vol. 24(4). -P. 506-510. -DOI: 10.1134/S1054661814040087.
Еще
Статья научная