Development of the heat panel of the small space apparatus for navigation support

Автор: V. V. Kolga, I. S. Yarkov, E. A. Yarkova

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.21, 2020 года.

Бесплатный доступ

To clarify the trajectory of the spacecraft in a given orbit, the parameter of unmodeled acceleration is taken into account. Today, in the design and manufacture of a spacecraft to meet the requirements of the technical specifications for the maximum allowable values of unmodeled accelerations during the operation of on-board equipment, it is necessary to take into account the effects of asymmetric heat fluxes from the panels of the spacecraft on the deviation of its center of mass from a given orbit. This article discusses the problem of the influence of asymmetric heat fluxes from the surfaces of the spacecraft emanating from the panels ± Z, + Y (deterministic and non-deterministic component) on the level of unmodeled accelerations, which significantly affects the trajectory of the spacecraft. In order to meet the requirements for the temperature control system in terms of ensuring efficient heat removal from the on-board equipment devices and its distribution over the surface of the instrument installation panel, it is necessary to significantly improve the technical characteristics of heat transfer and heat conduction processes in the spacecraft. The analysis of the current thermal control system in modern satellites is carried out and its shortcomings are revealed. A constructive option is proposed for creating an energy-intensive thermal panel, which allows more efficient heat removal from devices and distribution over the panel. The designed thermal panel is a flat sealed panel of a single complex design of aluminum alloy, made by the additive technology method. The dimensions of the thermal panel are limited by the structural dimensions of the working area of 3D printers. At the moment, the main dimensions reach 600-800 mm. An increase in the working area in the future will enable the installation of large-sized electronic equipment. A two-dimensional mathematical model for calculating heat transfer processes in the designed thermal panel is presented. For the calculation, specific average values are introduced that characterize the effective cross sections for the vapor channels and the wick in the longitudinal and transverse directions, physical parameters (porosity of the wick and its degree of liquid saturation).

Еще

Spacecraft, asymmetric heat fluxes, thermal control system, unmodeled accelerations, power thermal panel.

Короткий адрес: https://sciup.org/148321760

IDR: 148321760   |   DOI: 10.31772/2587-6066-2020-21-3-382-388

Список литературы Development of the heat panel of the small space apparatus for navigation support

  • Beloysov L. U. Ocenivanie parametrov dvizheniya kosmicheskih apparatov [Estimation of motion parameters of spacecraft]. Moscow, Fizmatlit Publ., 2002, 216 p.
  • Malahovskij E. E., Poznyak E. L., Shulyaka A. A. [Flexible controlled apparatus with disturbances from internal sources]. Kosmicheskiye issledovaniya. 1995, Vol. 33, No. 5, P. 538–545 (In Russ.).
  • Maximov I. A. [Problems of support of reliable operation of modern spacecraft under factors of space and technogeneous character destabilizing influence]. Vestnik SibGAU. 2010, Vol. 30, No. 4, P. 100–101 (In Russ.).
  • Caplin S. V., Bolychev S. A. [A system for providing thermal conditions for an experimental model of an optical-telescopic complex of a spacecraft]. Vestnik SamGU. 2013, No. 9/2(110), P. 236–243 (In Russ.).
  • Alekseev N. G., Zagar O. V., Kas’yanov A. O. [A system for ensuring the thermal regime of the device with temperature control in a narrow range]. Мaterialy XI Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XI Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2007, P. 213 (In Russ.).
  • Kosenko V. E, Zvonary V. D., Suntsov S. B., Derevyanko V. A., Vasilyev E. N., Nesterov D. A. [The use of hyper-heat-conducting structures in the development of leaky space vehicles of increased power and resource] Мaterialy XVII Mezhdunarodnoy nauchnoy konferencii “Sistemnyy analiz, upravlenie i navigaciya” [Materials XVII International Scientific Conference “System analysis, management and navigation”]. Evpatoria, 2012, P. 20–22 (In Russ.).
  • Kosenko V. E, Zvonary V. D., Suntsov S. B., Chebotarev V. E., Fatkulin R. F., Bakirov M. T., Derevyanko V. A., Makukha M. V. [The Results of Using Heat-Conductive structures in the apparatus of spacecraft]. Мaterialy ХXI Mezhdunarodnoy nauchnoy konferencii “Sistemnyy analiz, upravlenie i navigaciya” [Materials ХXI International Scientific Conference “System analysis, management and navigation”]. Moscow, MAI, 2016, P. 45–47 (In Russ.).
  • Meseguer J., Perez-Grande I., Sanz-Andres A. Spacecraft thermal control. Cambridge, UK: Woodhead Publishing Limited, 2012. 413p.
  • Analysis of efficiency of systems for control of the thermal regime of spacecraft / A.V. Delkov et al. Chemical and Petroleum Engineering. 2016, No. 9, P. 714–719.
  • Suntsov S. B., Kosenko V. E, Derevyanko V. A. Modul’ radioelektronnoj apparatury s giperteploprovodyashchim osnovaniem [The module of electronic equipment with hyperthermally conductive]. Patent RF, no 2403692, 2009.
  • Vasilyev E. N., Derevyanko V. A., Nesterov D. A., Kosenko V. E., Chebotarev V. E. [Computational modeling of heat exchange processes in thermal control systems of spacecraft]. Vychislitel'nyye tekhnologii. 2009, Vol. 14, Iss. 6, P. 19–28 (In Russ.).
  • Delcov A. V., Hodenkov A. A., Zhuikov D. A. Mathematical modeling of single-phase thermal control system of the spacecraft. Proceedings of 12th Intern. Conf. on Actual Problems of Electronic Instrument Engineering. APEIPE 2014, P. 591–593.
  • Tanasienko F. V., Shevchenko Y. N., Delikov A. V., Kishkin A. A. [Two-dimensional thermal model of the thermal control system for nonhermetic formation spacecraft]. Siberian Journal of Science and Technology. 2018, Vol. 19. No. 3, P. 445–451 (In Russ.).
  • Kraev M. V., Zagar O. V., Kraev V. M., Golikovskaya K. F. Nestacionarnye teplovye rezhimy kosmicheskih apparatov sputnikovyh system [Non-stationary thermal conditions of spacecraft of satellite systems]. Krasnoyarsk, 2004, 280 p.
  • Faghri A. Heat Pipe Science and Technology. Taylor and Francis Group, 1995, 874 p.
Еще
Статья научная