Диагностика и лечение рака яичников в свете современных молекулярно-генетических достижений
Автор: Кагирова Э.М., Хусаинова Р.И., Минниахметов И.Р.
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Обзоры
Статья в выпуске: 5 т.22, 2023 года.
Бесплатный доступ
Цель исследования - систематизация и обобщение литературных данных по изучению клинико-генетических аспектов, молекулярного патогенеза, а также новых тенденций диагностики и лечения злокачественных новообразований яичников. материал и методы. Поиск литературных источников производился по базам данных Web of Science, Scopus, Medline, PubMed, eLibrary.
Рак яичников, мутации, таргетная терапия, микроокружение опухоли
Короткий адрес: https://sciup.org/140303534
IDR: 140303534 | DOI: 10.21294/1814-4861-2023-22-5-118-133
Список литературы Диагностика и лечение рака яичников в свете современных молекулярно-генетических достижений
- World ovarian cancer coalition [Internet]. Ovarian cancer [cited 2023 Feb 01]. URL: https://worldovariancancercoalition.org/aboutovarian-cancer/key-stats.
- Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2): 69–90. doi: 10.3322/caac.20107. Erratum in: CA Cancer J Clin. 2011; 61(2): 134.
- Vaughan S., Coward J.I., Bast R.C., Berchuck A., Berek J.S., Brenton J.D., Coukos G., Crum C.C., Drapkin R., Etemadmoghadam D., Friedlander M., Gabra H., Kaye S.B., Lord C.J., Lengyel E., Levine D.A., McNeish I.A., Menon U., Mills G.B., Nephew K.P., Oza A.M., Sood A.K., Stronach E.A., Walczak H., Bowtell D.D., Balkwill F.R. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011; 11(10): 719–25. doi: 10.1038/nrc3144.
- Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой М., 239 с. [The status of cancer care for the population of Russia in 2020. Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow, 2021. 239 p. (in Russian)].
- Blagden S.P. Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer. Front Oncol. 2015; 5: 149. doi: 10.3389/fonc.2015.00149.
- Female Genital Tumours: WHO Classification of Tumours. 5th ed.; Vol. 4. IARC: Lyon, France, 2020.
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474(7353): 609–15. doi: 10.1038/nature10166. Erratum in: Nature. 2012; 490(7419): 298.
- Ahmed A.A., Etemadmoghadam D., Temple J., Lynch A.G., Riad M., Sharma R., Stewart C., Fereday S., Caldas C., Defazio A., Bowtell D., Brenton J.D. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010; 221(1): 49–56. doi: 10.1002/path.2696.
- Hollis R.L., Thomson J.P., Stanley B., Churchman M., Meynert A.M., Rye T., Bartos C., Iida Y., Croy I., Mackean M., Nussey F., Okamoto A., Semple C.A., Gourley C., Herrington C.S. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun. 2020. 11(1). https://doi.org/10.1038/s41467-020-18819-5.
- Yamamoto S., Tsuda H., Takano M., Iwaya K., Tamai S., Matsubara O. PIK3CA mutation is an early event in the development of endometriosisassociated ovarian clear cell adenocarcinoma. J Pathol. 2011; 225(2): 189–94. doi: 10.1002/path.2940.
- De Leo A., Santini D., Ceccarelli C., Santandrea G., Palicelli A., Acquaviva G., Chiarucci F., Rosini F., Ravegnini G., Pession A., Turchetti D., Zamagni C., Perrone A.M., De Iaco P., Tallini G., de Biase D. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors. Diagnostics (Basel). 2021; 11(4): 697. doi: 10.3390/diagnostics11040697.
- Soslow R.A., Han G., Park K.J., Garg K., Olvera N., Spriggs D.R., Kauff N.D., Levine D.A. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod Pathol. 2012; 25(4): 625–36. doi: 10.1038/modpathol.2011.183.
- Matias-Guiu X., Stewart C.J.R. Endometriosis-associated ovarian neoplasia. Pathology. 2018; 50(2): 190–204. doi: 10.1016/j.pathol.2017.10.006.
- Iida Y., Okamoto A., Hollis R.L., Gourley C., Herrington C.S. Clear cell carcinoma of the ovary: a clinical and molecular perspective. Int J Gynecol Cancer. 2021; 31(4): 605–16. doi: 10.1136/ijgc-2020-001656.
- Sasamori H., Nakayama K., Razia S., Yamashita H., Ishibashi T., Ishikawa M., Sato S., Nakayama S., Otsuki Y., Fujiwaki R., Ishikawa N., Kyo S. Mutation Profiles of Ovarian Seromucinous Borderline Tumors in Japanese Patients. Curr Oncol. 2022; 29(5): 3658–67. doi: 10.3390/curroncol29050294.
- Cheasley D., Wakefield M.J., Ryland G.L., Allan P.E., Alsop K., Amarasinghe K.C., Ananda S., Anglesio M.S., Au-Yeung G., Böhm M., Bowtell D.D.L., Brand A., Chenevix-Trench G., Christie M., Chiew Y.E., Churchman M., DeFazio A., Demeo R., Dudley R., Fairweather N., Fedele C.G., Fereday S., Fox S.B., Gilks C.B., Gorringe K.L. The molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun. 2019; 10(1).
- Samuel D., Diaz-Barbe A., Pinto A., Schlumbrecht M., George S. Hereditary Ovarian Carcinoma: Cancer Pathogenesis Looking beyond BRCA1 and BRCA2. Cells. 2022; 11(3): 539. doi: 10.3390/cells11030539.
- Jiang X., Li X., Li W., Bai H., Zhang Z. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med. 2019; 23(4): 2303–13. doi: 10.1111/jcmm.14133.
- Altman A.D., Nelson G.S., Ghatage P., McIntyre J.B., Capper D., Chu P., Nation J.G., Karnezis A.N., Han G., Kalloger S.E., Köbel M. The diagnostic utility of TP53 and CDKN2A to distinguish ovarian high-grade serous carcinoma from low-grade serous ovarian tumors. Mod Pathol. 2013; 26(9): 1255–63. doi: 10.1038/modpathol.2013.55.
- Santandrea G., Piana S., Valli R., Zanelli M., Gasparini E., De Leo A., Mandato V.D., Palicelli A. Immunohistochemical Biomarkers as a Surrogate of Molecular Analysis in Ovarian Carcinomas: A Review of the Literature. Diagnostics (Basel). 2021; 11(2): 199. doi: 10.3390/diagnostics11020199.
- Konstantinopoulos P.A., Ceccaldi R., Shapiro G.I., D’Andrea A.D. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015; 5(11): 1137–54. doi: 10.1158/2159-8290.CD-15-0714.
- Mekonnen N., Yang H., Shin Y.K. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol. 2022; 12. doi: 10.3389/fonc.2022.880643.
- Talens F., Jalving M., Gietema J.A., Van Vugt M.A. Therapeutic targeting and patient selection for cancers with homologous recombination defects. Expert Opin Drug Discov. 2017; 12(6): 565–81. doi: 10.1080/17460441.2017.1322061.
- Konstantinopoulos P.A., Lacchetti C., Annunziata C.M. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline Summary. JCO Oncol Pract. 2020; 16(8): 835–8. doi: 10.1200/JOP.19.00773.
- Zamarin D. Novel therapeutics: response and resistance in ovarian cancer. Int J Gynecol Cancer. 2019; 29(s2): 16–21. doi: 10.1136/ijgc-2019-000456.
- Wang H., Liu P., Xu H., Dai H. Early diagonosis of ovarian cancer: serum HE4, CA125 and ROMA model. Am J Transl Res. 2021; 13(12): 14141–8.
- Yang W.L., Gentry-Maharaj A., Simmons A., Ryan A., Fourkala E.O., Lu Z., Baggerly K.A., Zhao Y., Lu K.H., Bowtell D., Jacobs I., Skates S.J., He W.W., Menon U., Bast R.C.; AOCS Study Group. Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer. Clin Cancer Res. 2017; 23(19): 5912–22. doi: 10.1158/1078-0432.CCR-17-0284.
- Dochez V., Caillon H., Vaucel E., Dimet J., Winer N., Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019; 12(1). doi: 10.1186/s13048-019-0503-7.
- Yang W.L., Lu Z., Bast R.C. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev Mol Diagn. 2017; 17(6): 577–91. doi: 10.1080/14737159.2017.1326820.
- Terry K.L., Schock H., Fortner R.T., Hüsing A., Fichorova R.N., Yamamoto H.S., Vitonis A.F., Johnson T., Overvad K., Tjønneland A., Boutron- Ruault M.C., Mesrine S., Severi G., Dossus L., Rinaldi S., Boeing H., Benetou V., Lagiou P., Trichopoulou A., Krogh V., Kuhn E., Panico S., Bueno-de-Mesquita H.B., Onland-Moret N.C., Peeters P.H., Gram I.T., Weiderpass E., Duell E.J., Sanchez M.J., Ardanaz E., Etxezarreta N., Navarro C., Idahl A., Lundin E., Jirström K., Manjer J., Wareham N.J., Khaw K.T., Byrne K.S., Travis R.C., Gunter M.J., Merritt M.A., Riboli E.,Cramer D.W., Kaaks R. A Prospective Evaluation of Early Detection Biomarkers for Ovarian Cancer in the European EPIC Cohort. Clin Cancer Res. 2016; 22(18): 4664–75. doi: 10.1158/1078-0432.CCR-16-0316.
- Kim B., Park Y., Kim B., Ahn H.J., Lee K.A., Chung J.E., Han S.W. Diagnostic performance of CA 125, HE4, and risk of Ovarian Malignancy Algorithm for ovarian cancer. J Clin Lab Anal. 2019; 33(1). doi: 10.1002/jcla.22624.
- Zhang R., Siu M.K.Y., Ngan H.Y.S., Chan K.K.L. Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J Mol Sci. 2022; 23(19): 12041. doi: 10.3390/ijms231912041.
- Macdonald I.K., Parsy-Kowalska C.B., Chapman C.J. Autoantibodies: Opportunities for Early Cancer Detection. Trends Cancer. 2017; 3(3): 198–213. doi: 10.1016/j.trecan.2017.02.003.
- Fortner R.T., Damms-Machado A., Kaaks R. Systematic review: Tumor-associated antigen autoantibodies and ovarian cancer early detection. Gynecol Oncol. 2017; 147(2): 465–80. doi: 10.1016/j.ygyno.2017.07.138.
- Lokshin A.E., Winans M., Landsittel D., Marrangoni A.M., Velikokhatnaya L., Modugno F., Nolen B.M., Gorelik E. Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol. 2006; 102(2): 244–51. doi: 10.1016/j.ygyno.2005.12.011.
- Nakamura K., Sawada K., Yoshimura A., Kinose Y., Nakatsuka E., Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016; 15(1): 48. doi: 10.1186/s12943-016-0536-0.
- Yokoi A., Yoshioka Y., Hirakawa A., Yamamoto Y., Ishikawa M., Ikeda S.I., Kato T., Niimi K., Kajiyama H., Kikkawa F., Ochiya T. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017; 8(52): 89811–23. doi: 10.18632/oncotarget.20688.
- Cheng X., Zhang L., Chen Y., Qing C. Circulating cell-free DNA and circulating tumor cells, the “liquid biopsies” in ovarian cancer. J Ovarian Res. 2017; 10(1): 75. doi: 10.1186/s13048-017-0369-5.
- Elias K.M., Guo J., Bast R.C. Early Detection of Ovarian Cancer. Hematol Oncol Clin North Am. 2018; 32(6): 903–14. doi: 10.1016/j.hoc.2018.07.003.
- Arneth B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer. 2018; 18(1): 527. doi: 10.1186/s12885-018-4433-3.
- Yang Z., Wang W., Zhao L., Wang X., Gimple R.C., Xu L., Wang Y., Rich J.N., Zhou S. Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci Adv. 2021; 7(9). doi: 10.1126/sciadv.abb0737.
- Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., Hruban R.H., Wolfgang C.L., Goggins M.G., Dal Molin M., Wang T.L., Roden R., Klein A.P., Ptak J., DobbynL., Schaefer J., Silliman N., Popoli M., Vogelstein J.T., Browne J.D., Schoen R.E., Brand R.E., Tie J., Gibbs P., Wong H.L., Mansfield A.S., Jen J., Hanash S.M., Falconi M., Allen P.J., Zhou S., Bettegowda C., Diaz L.A., Tomasetti C., Kinzler K.W., Vogelstein B., Lennon A.M., Papadopoulos N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018; 359(6378): 926–30. doi: 10.1126/science.aar3247.
- Bartlett T.E., Chindera K., McDermott J., Breeze C.E., Cooke W.R., Jones A., Reisel D., Karegodar S.T., Arora R., Beck S., Menon U., Dubeau L., Widschwendter M. Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nat Commun. 2016; 7: 11620. doi: 10.1038/ncomms11620.
- Natanzon Y., Goode E.L., Cunningham J.M. Epigenetics in ovarian cancer. Semin Cancer Biol. 2018; 51: 160–9. doi: 10.1016/j.semcancer.2017.08.003.
- Talens R.P., Boomsma D.I., Tobi E.W., Kremer D., Jukema J.W., Willemsen G., Putter H., Slagboom P.E., Heijmans B.T. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010; 24(9): 3135–44. doi: 10.1096/fj.09-150490.
- Абрамов П.М., Винокурова С.В., Елкин Д.С. Маркеры метилирования ДНК для диагностики серозного рака яичников. Онкогинекология. 2019; 4(32): 4–16. [Abramov P.M., Vinokurova S.V., Elkin D.S. DNA Methylation Markers For Diagnosis Of Serous Ovarian Cancer. Oncogynecology. 2019; 4(32): 4–16. (in Russian)].
- Loginov V.I., Pronina I.V., Filippova E.A., Burdennyy A.M., Lukina S.S., Kazubskaya T.P., Uroshlev L.A., Fridman M.V., Brovkina O.I., Apanovich N.V., Karpukhin A.V., Stilidi I.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. Aberrant Methylation of 20 miRNA Genes Specifically Involved in Various Steps of Ovarian Carcinoma Spread: From Primary Tumors to Peritoneal Macroscopic Metastases. Int J Mol Sci. 2022; 23(3): 1300. doi: 10.3390/ijms23031300.
- Bondurant A.E., Huang Z., Whitaker R.S., Simel L.R., Berchuck A., Murphy S.K. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol. 2011; 123(3): 581–7. doi: 10.1016/j.ygyno.2011.08.029.
- Fiegl H., Windbichler G., Mueller-Holzner E., Goebel G., Lechner M., Jacobs I.J., Widschwendter M. HOXA11 DNA methylation--a novel prognostic biomarker in ovarian cancer. Int J Cancer. 2008; 123(3): 725–9. doi: 10.1002/ijc.23563.
- Xiao Y., Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021; 221. doi: 10.1016/j.pharmthera.2020.107753.
- Zheng G.X., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., Gregory M.T., Shuga J., Montesclaros L., Underwood J.G., Masquelier D.A., Nishimura S.Y., Schnall-Levin M., Wyatt P.W., Hindson C.M., Bharadwaj R., Wong A., Ness K.D., Beppu L.W., Deeg H.J., McFarland C., Loeb K.R., Valente W.J., Ericson N.G., Stevens E.A., Radich J.P., Mikkelsen T.S., Hindson B.J., Bielas J.H. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8. doi: 10.1038/ncomms14049.
- Olalekan S., Xie B., Back R., Eckart H., Basu A. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep. 2021; 35(8). doi: 10.1016/j.celrep.2021.109165.
- Izar B., Tirosh I., Stover E.H., Wakiro I., Cuoco M.S., Alter I., Rodman C., Leeson R., Su M.J., Shah P., Iwanicki M., Walker S.R., Kanodia A., Melms J.C., Mei S., Lin J.R., Porter C.B.M., Slyper M., Waldman J., Jerby-Arnon L., Ashenberg O., Brinker T.J., Mills C., Rogava M., Vigneau S., Sorger P.K., Garraway L.A., Konstantinopoulos P.A., Liu J.F., Matulonis U., Johnson B.E., Rozenblatt-Rosen O., Rotem A., Regev A. A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 2020; 26(8): 1271–9. doi: 10.1038/s41591-020-0926-0.
- Sun Y., Wu L., Zhong Y., Zhou K., Hou Y., Wang Z., Zhang Z., Xie J., Wang C., Chen D., Huang Y., Wei X., Shi Y., Zhao Z., Li Y., Guo Z., Yu Q., Xu L., Volpe G., Qiu S., Zhou J., Ward C., Sun H., Yin Y., Xu X., Wang X., Esteban M.A., Yang H., Wang J., Dean M., Zhang Y., Liu S., Yang X., Fan J. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021; 184(2): 404–21. doi: 10.1016/j.cell.2020.11.041.
- Zhou Y., Yang D., Yang Q., Lv X., Huang W., Zhou Z., Wang Y., Zhang Z., Yuan T., Ding X., Tang L., Zhang J., Yin J., Huang Y., Yu W., Wang Y., Zhou C., Su Y., He A., Sun Y., Shen Z., Qian B., Meng W., Fei J., Yao Y., Pan X., Chen P., Hu H. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 2020; 11(1): 6322. doi: 10.1038/s41467-020-20059-6. Erratum in: Nat Commun. 2021; 12(1): 2567.
- Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi: 10.3389/fonc.2020.566511.
- Chávez-Galán L., Olleros M.L., Vesin D., Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol. 2015; 6: 263. doi: 10.3389/fimmu.2015.00263.
- Montfort A., Barker-Clarke R.J., Piskorz A.M., Supernat A., Moore L., Al-Khalidi S., Böhm S., Pharoah P., McDermott J., Balkwill F.R., Brenton J.D. Combining measures of im mune infiltration shows additive effect on survival prediction in high-grade serous ovarian carcinoma. Br J Cancer. 2020; 122(12): 1803–10. doi: 10.1038/s41416-020-0822-x.
- Kawamura K., Komohara Y., Takaishi K., Katabuchi H., Takeya M. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int. 2009; 59(5): 300–5. doi: 10.1111/j.1440-1827.2009.02369.x.
- Baci D., Bosi A., Gallazzi M., Rizzi M., Noonan D.M., Poggi A., Bruno A., Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci. 2020; 21(9): 3125. doi: 10.3390/ijms21093125.
- Steitz A.M., Steffes A., Finkernagel F., Unger A., Sommerfeld L., Jansen J.M., Wagner U., Graumann J., Müller R., Reinartz S. Tumorassociated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 2020; 11(4): 249. doi: 10.1038/s41419-020-2438-8.
- Yin M., Li X., Tan S., Zhou H.J., Ji W., Bellone S., Xu X., Zhang H., Santin A.D., Lou G., Min W. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest. 2016; 126(11): 4157–73. doi: 10.1172/JCI87252.
- Chandra A., Pius C., Nabeel M., Nair M., Vishwanatha J.K., Ahmad S., Basha R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019; 8(16): 7018–31. doi: 10.1002/cam4.2560.
- Хохлова С.В. Новое в лечении high grade серозного рака яичников. Эффективная фармакотерапия. 2019; 15(38): 24–9. [Khokhlova S.V. New in High Grade Serous Ovarian Cancer Treatment. Effective Pharmacotherapy. 2019; 15(38): 24–9. (in Russian)]. doi: 10.33978/2307-3586-2019-15-38-24-29.
- Högberg T., Glimelius B., Nygren P.; SBU-group. Swedish Council of Technology Assessment in Health Care. A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol. 2001; 40(2–3): 340–60. doi: 10.1080/02841860151116420.
- Sehouli J., Camara O., Schmidt M., Mahner S., Seipelt G., Otremba B., Schmalfeldt B., Tesch H., Lorenz-Schlüter C., Oskay-Ozcelik G.; North-Eastern German Society of Gynecological Oncology. Pegylated liposomal doxorubicin (CAELYX) in patients with advanced ovarian cancer: results of a German multicenter observational study. Cancer Chemother Pharmacol. 2009; 64(3): 585–91. doi: 10.1007/s00280-008-0909-1.
- Zheng F., Zhang Y., Chen S., Weng X., Rao Y., Fang H. Mechanism and current progress of Poly ADP-ribose polymerase (PARP) inhibitors in the treatment of ovarian cancer. Biomed Pharmacother. 2020; 123. doi: 10.1016/j.biopha.2019.109661.
- Pujade-Lauraine E., Ledermann J.A., Selle F., Gebski V., Penson R.T., Oza A.M., Korach J., Huzarski T., Poveda A., Pignata S., Friedlander M., Colombo N., Harter P., Fujiwara K., Ray-Coquard I., Banerjee S., Liu J., Lowe E.S., Bloomfield R., Pautier P.; SOLO2/ENGOT-Ov21 investigators. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017; 18(9): 1274–84. doi: 10.1016/S1470-2045(17)30469-2. Erratum in: Lancet Oncol. 2017; 18(9): 510.
- Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434(7035): 917–21. doi: 10.1038/nature03445.
- Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., Agnew K.J., Pritchard C.C., Scroggins S., Garcia R.L., King M.C., Swisher E.M. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014; 20(3): 764–75. doi: 10.1158/1078-0432.CCR-13-2287.
- Hussein Y.R., Ducie J.A., Arnold A.G., Kauff N.D., Vargas-Alvarez H.A., Sala E., Levine D.A., Soslow R.A. Invasion Patterns of Metastatic Extrauterine High-grade Serous Carcinoma With BRCA Germline Mutation and Correlation With Clinical Outcomes. Am J Surg Pathol. 2016; 40(3): 404–9. doi: 10.1097/PAS.0000000000000556.
- Pommier Y., O’Connor M.J., de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016; 8(362). doi: 10.1126/scitranslmed.aaf9246. Erratum in: Sci Transl Med. 2016; 8(368).
- Paik J. Olaparib: A Review as First-Line Maintenance Therapy in Advanced Ovarian Cancer. Target Oncol. 2021; 16(6): 847–56. doi: 10.1007/s11523-021-00842-1.
- Monk B.J., Minion L.E., Coleman R.L. Anti-angiogenic agents in ovarian cancer: past, present, and future. Ann Oncol. 2016; 27(s1): 33–9. doi: 10.1093/annonc/mdw093.
- Sopo M., Anttila M., Hämäläinen K., Kivelä A., Ylä-Herttuala S., Kosma V.M., Keski-Nisula L., Sallinen H. Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer. 2019; 19(1): 584. doi: 10.1186/s12885-019-5757-3.
- Orbegoso C., Marquina G., George A., Banerjee S. The role of Cediranib in ovarian cancer. Expert Opin Pharmacother. 2017; 18(15): 1637–48. doi: 10.1080/14656566.2017.1383384.
- Hirte H., Lheureux S., Fleming G.F., Sugimoto A., Morgan R., Biagi J., Wang L., McGill S., Ivy S.P., Oza A.M. A phase 2 study of cediranib in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: a trial of the Princess Margaret, Chicago and California Phase II Consortia. Gynecol Oncol. 2015; 138(1): 55–61. doi: 10.1016/j.ygyno.2015.04.009.
- Ledermann J.A., Embleton-Thirsk A.C., Perren T.J., Jayson G.C., Rustin G.J.S., Kaye S.B., Hirte H., Oza A., Vaughan M., Friedlander M., González-Martín A., Deane E., Popoola B., Farrelly L., Swart A.M., Kaplan R.S., Parmar M.K.B.; ICON6 collaborators. Cediranib in addition to chemotherapy for women with relapsed platinum-sensitive ovarian cancer (ICON6): overall survival results of a phase III randomised trial. ESMO Open. 2021; 6(2). doi: 10.1016/j.esmoop.2020.100043.
- Brave S.R., Ratcliffe K., Wilson Z., James N.H., Ashton S., Wainwright A., Kendrew J., Dudley P., Broadbent N., Sproat G., Taylor S. Barnes C., Silva J.C., Farnsworth C.L., Hennequin L., Ogilvie D.J., Jürgensmeier J.M., Shibuya M., Wedge S.R., Barry S.T. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther. 2011; 10(5): 861–73. doi: 10.1158/1535-7163.MCT-10-0976.
- McCann K.E. Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer. Curr Opin Obstet Gynecol. 2018; 30(1): 7–16. doi: 10.1097/GCO.0000000000000428.
- Lim J.J., Yang K., Taylor-Harding B., Wiedemeyer W.R., Buckanovich R.J. VEGFR3 inhibition chemosensitizes ovarian cancer stemlike cells through down-regulation of BRCA1 and BRCA2. Neoplasia. 2014; 16(4): 343–53. doi: 10.1016/j.neo.2014.04.003.
- Bindra R.S., Crosby M.E., Glazer P.M. Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev. 2007; 26(2): 249–60. doi: 10.1007/s10555-007-9061-3.
- Chan N., Pires I.M., Bencokova Z., Coackley C., Luoto K.R., Bhogal N., Lakshman M., Gottipati P., Oliver F.J., Helleday T., Hammond E.M., Bristow R.G. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 2010; 70(20): 8045–54. doi: 10.1158/0008-5472.CAN-10-2352.
- Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S., Sansom D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011; 332(6029): 600–3. doi: 10.1126/science.1202947.
- Daassi D., Mahoney K.M., Freeman G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020; 20(4): 209–15. doi: 10.1038/s41577-019-0264-y.
- Salmaninejad A., Valilou S.F., Shabgah A.G., Aslani S., Alimardani M., Pasdar A., Sahebkar A. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019; 234(10): 16824–37. doi: 10.1002/jcp.28358.
- Yang C., Xia B.R., Zhang Z.C., Zhang Y.J., Lou G., Jin W.L. Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Front Immunol. 2020; 11. doi: 10.3389/fimmu.2020.577869.
- Gong J., Chehrazi-Raffle A., Reddi S., Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018; 6(1): 8. doi: 10.1186/s40425-018-0316-z.
- Keenan T.E., Burke K.P., Van Allen E.M. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019; 25(3): 389–402. doi: 10.1038/s41591-019-0382-x.
- Conway J.R., Kofman E., Mo S.S., Elmarakeby H., Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018; 10(1): 93. doi: 10.1186/s13073-018-0605-7.
- Pellegrino B., Musolino A., Llop-Guevara A., Serra V., De Silva P., Hlavata Z., Sangiolo D., Willard-Gallo K., Solinas C. Homologous Recombination Repair Deficiency and the Immune Response in Breast Cancer: A Literature Review. Transl Oncol. 2020; 13(2): 410–22. doi: 10.1016/j.tranon.2019.10.010.
- Paijens S.T., Vledder A., de Bruyn M., Nijman H.W. Tumorinfiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021; 18(4): 842–59. doi: 10.1038/s41423-020-00565-9.
- Plesca I., Tunger A., Müller L., Wehner R., Lai X., Grimm M.O., Rutella S., Bachmann M., Schmitz M. Characteristics of Tumor-Infiltrating Lymphocytes Prior to and During Immune Checkpoint Inhibitor Therapy. Front Immunol. 2020; 11: 364. doi: 10.3389/fimmu.2020.00364.
- Andrikopoulou A., Zografos E., Apostolidou K., Kyriazoglou A., Papatheodoridi A.M., Kaparelou M., Koutsoukos K., Liontos M., Dimopoulos M.A., Zagouri F. Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis. Front Oncol. 2022; 12. doi: 10.3389/fonc.2022.1030786.
- Тюляндина А.С., Коломиец Л.А., Морхов К.Ю., Нечушкина В.М., Покатаев И.А., Румянцев А.А., Тюляндин С.А., Урманчеева А.Ф., Хохлова С.В. Практические рекомендации по лекарственному лечению рака яичников, первичного рака брюшины и рака маточных труб. Злокачественные опухоли. 2022; 12(3s2-1): 198–211. [Tyulyandina A.S., Kolomiets L.A., Morkhov K.Yu., Nechushkina V.M., Pokataev I.A., Rumyantsev A.A., Tyulyandin S.A., Urmancheeva A.F., Khokhlova S.V. Practical recommendations for the drug treatment of ovarian cancer, primary peritoneal cancer and fallopian tube cancer. Malignant Tumors. 2022; 12(3s2-1): 198–211. (in Russian)]. doi: 10.18027/2224-5057-2022-12-3s2-198-211.