Differential hikes in phenolic and flavonoid compounds in germinating soybean (glycine max) seeds under abiotic stresses
Автор: Sirsat Ashwini K., Nadaf Heena L., Hivrale Vandana K.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.19, 2023 года.
Бесплатный доступ
Background: The current study focuses on the participation of total phenolic content (TPC), total flavonoid content (TFC) as well as antioxidant activity in germinating soybean seeds under abiotic stress. The context and purpose of the study: For this study, soybean seeds were subjected to three abiotic stresses namely drought, flood, and salinity for 3 days. Method: The estimation of TPC and TFC was performed by FTIR and spectrophotometric method. The spectrophotometric estimation of TPC and TFC was performed by Folin Ciocalteu and Aluminium Chloride method respectively. Results: The highest TPC (68.78 µg gallic acid/ml) and TFC content (6.23 µg quercetin/ml) found in drought treated seeds for one day. In terms of the DPPH scavenging assay, the highest (67.63%) and lowest (46.83%) percentage of inhibition was observed on the1st and 3rd day of salinity stress respectively. Results of the current study also showed a strong positive correlation between TPC and TFC analyzed by FTIR and Spectral data. Conclusion: The study supports the role of phenolic and flavonoid in germinating soybean seeds under abiotic stress.
Abiotic stress, phenolic, flavonoid, ftir, soybean (glycine max)
Короткий адрес: https://sciup.org/143179373
IDR: 143179373
Список литературы Differential hikes in phenolic and flavonoid compounds in germinating soybean (glycine max) seeds under abiotic stresses
- Abdel-Moemin, A.R. (2016). Analysis of phenolic acids and anthocyanins of pasta-like product enriched with date kernels (Phoenix dactylifera L.) and purple carrots (Daucus carota L. sp. sativus var atrorubens). Food Measure, 10, 507–519. doi: 10.1007/s11694-016-9329-9
- Achakzai, A.K.K., Achakzai, P., Masood, A., Kalyani S.A., Tareen, R. B. (2009). Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pakistan Journal of Botany, 41 (5), 2129–2135.
- Ahmed, A.R., Gabr, A.M.M., AL-Sayed, H.M.A., & Smetanska, I. (2012). Effect of drought and salinity stress on total phenolic, flavonoid and flavonol contents and antioxidant activity in in vitro sprout cultures of Garden cress (Lepidium sativum). Journal of Applied Sciences Research, 8 (8), 3934-3942.
- Athar, H.R., & Ashraf, M. (2009). Strategies for crop improvement against salinity and drought stress: an overview. 1st edn. Springer, New York, 44, 1–16.
- Austen, N., Walker, H.J., Lake, J.A., Phoenix G.K., & Cameron D.D. (2019). The regulation of plant secondary metabolism in response to abiotic stress: interaction between heat shock and elevated CO2. Frontiers in Plant Science, 10, 1-12. doi: 10.3389/fpls.2019.01463.
- Baba, S.A., & Malik, S.A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science; 9, 449–454.
- Banerjee, S., Dey, N., & Adak, M.K. (2015). Assessment of some biomarkers under submergence stress in some rice cultivars varying in responses. American Journal of Plant Sciences, 6, 84-94. doi:10.4236/ajps.2015.61010
- Barnabas, B., Jagner, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environment, 31, 11–38. doi: 10.1111/j.1365-3040.2007.01727.x
- Bej, S., & Basak J. (2014). Micro RNAs: the potential biomarkers in plant stress response. Scientific Research, 5, 748-759. doi: 10.4236/ajps.2014.55089
- Chen, P., Yan, K., Shao, H., & Zhao, S. (2013). Physiological mechanisms for high salt tolerance in wild Soybean (Glycine soja) from yellow river delta, china: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE, 8(12) doi:10.1371/journal.pone.0083227
- Cheng, Q., Gan, Z., Wang, Y., Lu S., Hou Z., et al., (2020). The Soybean gene J contributes to salt stress tolerance by up regulating salt responsive genes. Frontiers in Plant Science, 11, 1-10. doi: 10.3389/fpls.2020.00272.
- Chung, Y.S., Kim, K.S., Hamayun, M., & Kim Y. (2020). Silicon confers Soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10, 1-11. doi:10.3389/fpls.2019.01725.
- Deshmukh, R., Sonah, H., Gunvant, P., Chen, W., Prince, S., et al., (2014). Interacting omic approaches for abiotic stress tolerance in Soybean, Frontiers in Plant Science, 5, 1-13. doi: 10.3389/fpls.2014.00244
- Gharibi, S., Ebrahim, B., Ghodratollah S., & Goli S.A.H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology,178, 796–809. doi: 10.1007/s12010-015-1909-3
- Gimenez, M.J., Valverde, J.M., Valero, D., Guillen, F., Martinez, D., et al., (2014). Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry, 160, 226–232. doi: 10.1016/j.foodchem.2014.03.107.
- Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biological, and molecular characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/20147/701596.
- Hackenberg, M., Gustafson, P., Langridge, P., & Shi, Bu-Jun (2015). Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnology Journal, 13, 2-13.
- Hivrale. V., Zheng, Y., Puli, C.O.R., Jagadeeswaran, G., Gowdu, K., et al., (2016). Characterization of drought and heat responsive microRNAs in switchgrass. Plant Science, 242, 214-223. doi: 10.1016/j.plantsci.2015.07.018.
- Hussain F. and Farzana U. (2019). Fungal Biotic stress in plants and its control strategy. Abiotic and biotic stress in plants. (pp 1-7). IntechOpen.
- John, M. K.M., Bhagwat, A. A., & Luthria, D. L. (2017). Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions. Food Chemistry, 235, 145-153. doi:10.1016/j.foodchem.2017.04.143
- Kamtekar, S., Keer V., & Patil V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, Vol. 4 (09), 061-065. doi: 10.7324/JAPS.2014.40911
- Khan, F., Siddiqi, T.O., Mahmooduzzafar & Ahmad, A. (2009). Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt in stress. Journal of Plant Interactions, 4, 295-306. doi: 10.1080/17429140903082635.
- Lin, K.H., Chao, P.Y., Yang, C.M., Cheng, W.C., Lo H.F., et al., (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies,47, 417-426.
- Lim, T.Y., Lim, Y.Y., & Yule, C.M. (2017). Distributation and characterisation of phenolic compounds in Macaranga pruinosa and associated soils in tropical peat swamp forest. Journal of Tropical Forest Science, 29 (4), 509-518. doi: 10.26525/jtfs20l7.29.4.509518
- Mutava, R.N., Prince, S.J.K., Syed N.H., et al., (2015). Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120. doi: 10.1016/j.plaphy.2014.11.010
- Muthukumaran, P., Kalakandan, S.K, & Ravichandran, K. (2017). Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Turmeric). Pharmacognosy Journal, 9(6), 952-956.
- Neves G. Y. S., Marchiosi, R., Ferrarese, M. L. L., Siqueira-Soares R. C., et al., (2010). Root growth inhibition and lignification induced by salt stress in Soybean. Journal of Agronomy & Crop Science, 196, 467-473. doi:10.1111/j.1439-037X.2010.00432.
- Pires, H.R.A., Franco, A.C., Piedade, M.T.F., Scudeller, V.V., Kruijt B., et al., (2018). Flood tolerance in two tree species that inhabit both the Amazonian floodplain and dry Cerrado savanna of Brazil. AoB PLANTS, 10, 1-15. doi: 10.1093/aobpla/ply065.
- Sahitya, U.L., Krishna, M.S.R., Sri Deepthi, R., Prasad, G.S., & Kasim, D.P. (2018). Seed antioxidants interplay with drought stress tolerance indices in Chilli (Capsicum annuumL) seedlings. BioMed Research International,1-14. doi.org/10.1155/2018/1605096
- Santos, D.I., Correia, M.J.N., Mateus, M.M., Saraiva, J.A., Vicente, A.A. et al., (2019). Fourier transform infrared (FT-IR) spectroscopy as a possible rapid tool to evaluate abiotic stress effects on pineapple by-products. Applied Sciences, 9, 1-11. doi:10.3390/app9194141.
- Sarker, U., & Oba, S. (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology, 18, 258. doi:10.1186/s12870-018-1484-1
- Shah, A. & Smith, D.L. (2020). Flavonoid in agriculture: chemistry and roles in, biotic and abiotic stress responses and microbial associations. Agronomy, 10, 1-26. doi:10.3390/agronomy10081209.
- Shaki, F., Maboud, H.E., & Niknam, V. (2018). Growth enhancement and salt tolerance of Safflower (Carthamustinctorius L.), by salicylic acid. Current Plant Biology, 13, 16-22. doi.org/10.1016/j.cpb.2018.04.001
- Swigonska, S., Amarowicz, R., Krol, A., Mostek, A., Badowiec A., et al., (2014). Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity. Acta Societatis BotanicorumPoloniae, 83(3), 209–218. doi: 10.5586/asbp.2014.026
- Tan Khang, D., Pham Thi, Thu Ha., Nguyen Thi, Lang., Tuyen, Phung Thi., Minh, Luong The., et al., (2016). Involvement of phenolic compounds in anaerobic flooding germination of rice (Oryza sativa L.). International Letters of Natural Sciences, 56, 73-81. doi:10.18052/www.scipress.com/ILNS.56.73
- Todayoshi, M., & Goldsmith D. (2009). World Soybean production : area harvested, yield and long term projections, International Food and Agribusiness Management Review, Vol 12(4), 143-162.
- Valifard M., Mobsenzadeh S., Kholdebarin B., & Rowshan V. (2014). Effect of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. South African Journal of Botany, 93, 92-97. doi: org/10.1016/j.sajb.2014.04.002
- Varela M. C., Arslan, I., Reginato, M.A., Cenzano, A.M., & Luna, M.V. (2016). Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiology and Biochemistry, 104, 81-91. doi: 10.1016/j.plaphy.2016.03.014 .
- Waqas, M.A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., et al., (2019). Potential mechanism of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in Plant Science, 10, 1-14. Doi:10.3389/fpls.2019. 01336.
- Wu, C., Chen, P., Hummer. W., Zeng, A., & Klepadlo, M. (2017). Effect of flood stress on Soybean seed germination in the field. American Journal of Plant Sciences, 8, 53-68. doi.org/10.4236/ajps.2017.81005 .
- Xu Y., Freund D.M., Hegeman A.D., & Cohen J.D. (2022). Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation and recovery. Stress Biology, 1-16. doi:10.1007/s44154-022-00034-5.
- Zandalinas, S I, Mittler, R., Balfagón, D., et al., (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum,162, 2–12. doi:10.1111/ppl.12540.
- Zandalinas, S.I., Balfagon, D., Gomez-Cadenas, A., & Mittler, R. (2022). Plant responses to climate change: metabolic changes under combined abiotic stresses. Journal of Experimental Biology, 73 (11), 3339-3354. doi:10.1093/jxb/erac073.
- Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., et al., (2010). Genome wide identification and analysis of drought responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157-4168. doi: 10.1093/jxb/erq237.