Diffusion model of creamyand vegetable spreads mixing

Бесплатный доступ

A mathematical model of the process of mixing cream- and vegetable spread was developed. In modeling the diffusion understanding of the nature of the process were used, allowing escape from the apparatus geometry. After turning on the mixer the mixing process begins. Its duration can be determined by the behavior of the tracer particles introduced into the agitated medium in a predetermined quantity through the free liquid surface within a short period of time. If tracer particles have the same density with the surrounding bulk liquid phase, then the path of movement of the particles and the fluid are identical. The degree of homogeneity of the composition can be stirred calculated by the coefficient of variation, which is identified by the local concentrations of tracer particles in the volume of stirred medium. The task of a one-dimensional particle transport in the plane layer of the mixed liquid is solved for their calculation. The calculated ratios obtained allow us to calculate the particle concentration at any point in the volume being mixed at random times. Based on the experiment effective mixing coefficients are identified and relations for their assessment, depending on the Reynolds number of the mixer in the range studied variations of process are offered. Using the time dependence of the variation coefficient characterizing the homogenity of the system being mixed, it is possible to determine the duration of mixing to obtain the product with the desired uniformity and homogeneity of the product under the definition of a predetermined duration of the mixing process. The variation coefficient %, indicating a sufficiently good uniformity of the spread composition was found for the spread №1, being mixed with a stirrer rotating at a speed of rev / min, and the dimensionless length of the process for obtaining estimated relations. Using the proposed calculation algorithm one can estimate the homogeneity of the product at any time.

Еще

Короткий адрес: https://sciup.org/14040491

IDR: 14040491

Статья научная