Dynamic axisymmetric problem of a direct piezoeffect for a round bimorph plate
Автор: Shlyakhin D.A.
Статья в выпуске: 1, 2017 года.
Бесплатный доступ
The dynamic axisymmetric problem for a round bimorph structure consisting of the metal substrate and the axially polarized piezoceramic plate is considered. Its bending modes are caused by the action of the mechanical loading (normal tension) on the side surface; the loading is a function of the radial coordinate and time. The rigid and hinge supports of the plate are considered. The initial design relations are formulated for the piezoceramic material with the hexagonal crystal lattice of the 6 mm class. In order to solve the problem of the theory of electrodynamics in a three-dimensional formulation, the finite integral Hankel transformations along the axial coordinate and a generalized transformation (FIT) over the radial variable is used. At each stage, the standardization is carried out which allows implementing an appropriate transformation algorithm. In the first case the boundary conditions are presented in a mixed form; and in the second case they are homogeneous by introducing auxiliary functions. This approach allows gaining precise (within the used models) calculated ratios in a most general form. The built closed solution allows defining the frequency range of the axisymmetric oscillations, the stress-strain state and the nature of the changing induced electric field of the bimorph plate. This makes it possible to establish the conventional solutions of the designed devices, determine a way of fixing the electrical signal, pick up all the geometrical and physical characteristics of the typical elements of the piezoceramic transducers Also, the developed solution allows solving the problems of the elasticity and electroelasticity theory for circular thick and thin plates with an arbitrary number of layers under most general loading conditions without the use of kinematic hypotheses.
Bimorph plate, direct piezoelectric effect, theory of electro-elasticity, dynamic load, finite integral transformations
Короткий адрес: https://sciup.org/146211660
IDR: 146211660 | DOI: 10.15593/perm.mech/2017.1.10